Klamath River Fall Chinook Salmon – Fall 2018 Update

The Klamath River is closed to salmon fishing again this fall after the number of fish caught reached the small allotted quotas1. Poor run size (escapement) continues to be a problem, especially for the Scott River, a major spawning tributary of the Klamath. The 2015-2017 Scott run was approximately 2000 spawners, as compared to over 12,000 in 2014. Few fall-run salmon have been counted in the Scott this fall, compared to 4500 on the Shasta River. A past post describes the problem in detail.

The key factor in the decline of Scott fall Chinook has been poor late summer and early fall flows. Low flows do not allow adult salmon to ascend the Scott from the Klamath. This not only hurts that year’s Scott run, but out-year Scott (and Klamath) returns two to five years later.

The problem is especially acute this fall, with flows less than 10 cfs, less than 20% of the historical average (Figure 1). In fall 2017, flows were near or above average (Figure 2), leading to a small increase in the run to 2500, despite poor flows during the 2013-2015 drought. The strong 2014 run also helped.

The solution is simple: stop irrigating pastures and hayfields in Scott Valley after September 1. Many ranchers do, especially for hayfields, but not all. If that is not possible, there are many idle wells of 5-10 cfs capacity each that could pump water into the river to keep the river adequately watered, with little threat to subsequent winter groundwater recharge. A battle is brewing over Scott River water use and the public trust salmon resources.

Figure 1. Scott River flows fall 2018.

Figure 2. Scott River flow in fall 2017.

Reclamation is misleading on raising Shasta

A September 2018 Bureau of Reclamation “fact sheet” on raising Shasta Dam is misleading.

Enlarging the reservoir will provide an additional 630,000 acre-feet of stored water for the environment and for water users.

Comment: Additional storage would have been accomplished in only two years of the last decade (Figure 1). There would have been no additional cold-water pool volume in critical years 2013-2015, when the loss of cold water was a problem (Figure 2). Water users already had 100% allocations in the years in which raising Shasta would have added storage. Water allocations would likely increase in some dry years following wet years, offsetting any prospective environmental benefit by drawing down storage.

Enlarging the reservoir will improve water supply reliability for agricultural, municipal and industrial, and environmental uses; reduce flood damage; and improve water temperatures and water quality in the Sacramento River below the dam for anadromous fish survival.

Comment: there would have been no flood benefits in the past decade. Critical-year water temperatures from 2013-2015 would not have changed. Sacramento River water quality suffers the most in critical drought years. This would not benefit from raising Shasta.

Figure 1. Daily average flows from Keswick Reservoir over past decade. Raised Shasta would only accommodate added storage in wet year spill events in water years 2011 and 2017.

Figure 2. Shasta storage volume over past decade. Maximum existing storage is 4,552,000 AF.

Spring Hatchery Salmon Releases – Feather River

Hatchery fall-run salmon smolts being released into the Sacramento River at the mouth of the Feather River at Verona on May 2, 2018. SacBee photo.

The California Department of Fish and Wildlife released spring-run and fall-run salmon smolts raised at the Feather River Hatchery into the lower Feather River from late March to early May 2018. The initial spring-run releases were accompanied by a flow pulse up to 14,000 cfs into the lower Feather River.1 The early May release2 of fall-run was made without the benefit of a flow pulse.

Past performance of hatchery spring-run smolt releases is shown in Figure 1. The 2011 successful smolt release was accompanied by 8,000-17,000 cfs Oroville Dam flows (Figure 2) and wet year conditions in the Bay-Delta. The 2012 modestly successful smolt release was accompanied by a 3000 cfs flow pulse. The 2007 to 2009 smolt releases also had an accompanying 3000-5000 cfs flow releases, but flows that followed fell to 1000-2000 cfs. There was no flow pulse in 2010.

The early April 2018 flow pulse in the Feather River was followed by falling flows (14,000 cfs in early April down to 1000 cfs flow in late April – Figure 3). The latest release of fall-run smolts on May 2 was made near the mouth of the river because of low Feather River flows. Flows in the Sacramento River were also low (less than 10,000 cfs – Figure 4), and water temperatures were marginal at 65°F. The evidence summarized in Figures 1 and 2 suggests that smolts should be trucked to the Bay in non-wet years without strong flow pulses. Survival would be further increased if the smolts are barged from the mouth of the river.3

We can expect good survival from the earlier releases that were accompanied by flow pulses and poor survival from the early May release without a flow pulse. The latter release should have been trucked to the Bay.

Figure 1. Survival (% return) of spring-run salmon tag-release groups from 2007-2013 spring smolt releases. Source of data: http://www.rmpc.org/

Figure 2. Flow (cfs) in the lower Feather River at Gridley in Apr-May 2007-2013.

Figure 3. Flow (cfs) in the lower Feather River at Gridley in Mar-May 2018.

Figure 4. Flow (cfs) in Sacramento River just below mouth of Feather River at Verona in Mar-May 2018.

Sacramento River Salmon and Water Right Order 90-5

Operation of the Central Valley Project’s Shasta-Trinity Division is governed in part by the State Water Board’s Water Right Order (WRO) 90-5. Issued in 1990, this Order prescribes reasonable protection for Sacramento River salmon, steelhead, and sturgeon even under today’s conditions. The problem in recent years is that “requirements” are not being met by the Bureau of Reclamation.

Even in the past three non-drought years, including record wet 2017 and this year’s normal classification, Reclamation has not met requirements. This has caused significant impacts to salmon, steelhead, and sturgeon, which I have documented in prior posts. In the past three years, Reclamation has used its poor performance during the 2013-2015 drought and global warming as excuses to prioritize preserving water storage in Lake Shasta over meeting water temperature requirements for the Sacramento River under WRO 90-5. But while Reclamation has argued it must preserve Shasta Reservoir’s cold-water pool, Reclamation has maintained full deliveries to its Sacramento Valley contractors.

The State Board has a whole website dealing with the issue and problems dealing with Reclamation on the issue: (https://www.waterboards.ca.gov/waterrights/water_issues/programs/drought/sacramento_river/ ).

In a March 14, 2018 letter to Reclamation, the State Board’s Deputy Director for Water Rights wrote to Reclamation on compliance with WRO 90-5,1 stating:

As you know, Order 90-5 requires Reclamation to maintain a daily average temperature (DAT) of 56 degrees Fahrenheit (F) in the Sacramento River at Red Bluff Diversion Dam during times when higher temperatures will be detrimental to fish, unless factors beyond Reclamation’s reasonable control prevent it from maintaining such temperatures. If Reclamation is unable to meet the temperature requirement at Red Bluff Diversion Dam throughout the temperature control season, Reclamation must develop an operations plan for approval by the Chief of the State Water Board’s Division of Water Rights (Deputy Director). The plan, which is required to be developed in consultation with the California Department of Fish and Wildlife, U.S. Fish and Wildlife Service, National Marine Fisheries Service (NMFS) (collectively fisheries agencies), and the U.S. Western Area Power Administration (WAPA), must designate a location upstream of Red Bluff Diversion Dam where the temperature requirement will be met. Order 90-5 includes specific monitoring and reporting requirements in addition to a general requirement (Condition 3) that Reclamation conduct such monitoring and reporting as is required by the Deputy Director to ensure compliance with the terms and conditions of Order 90-5.

Given potential concerns with temperature management this year and the degraded status of the winter-run Chinook salmon population following the drought, Reclamation should be aware that operational changes may be needed beyond those proposed by Reclamation in their TMP to minimize impacts to winter-run Chinook salmon and avoid redirected impacts to other native species. Reclamation should acknowledge those needs in its TMP and provide for a process for continually evaluating conditions and operations to ensure that needed adjustments to temperature control operations are considered in a timely manner.

On April 2, 2018, Reclamation responded2:

This response not only states that Reclamation will not meet WRO 90-5 water temperature requirements at Red Bluff (river mile 243), but also that it will not meet these requirements at Balls Ferry (river mile 276), 30 miles upstream and half way to Keswick Dam. In fact, Reclamation to date has blatantly kept the promise of not meeting requirements (Figure 1), despite the fact that Shasta Reservoir is full of cold water. It is not even May yet!

The Coleman Fish Hatchery just stocked 4 million fall-run salmon hatchery smolts at Battle Creek upstream of Red Bluff, with another 2 million soon to follow.3 The recently released hatchery fish (and their wild counterparts) are being subjected to highly stressful conditions in their 200-mile journey to San Francisco Bay (Figures 2 and 3).

There is plenty of cold water in Shasta Reservoir (Figures 4 and 5) to meet the flow and temperature needs of salmon in the lower Sacramento River through the summer, as required by WRO 90-5. It would take a total release of about 6000 cfs from Shasta to meet WRO 90-5 requirements at this time just at Balls Ferry. Reclamation increased releases in the past several days to 5300 cfs to meet water contractor demands. The problem remains that this water is not reaching the lower river, where water temperatures now hit 70°F and exceed the WRO 90-5 limits of 68°F (Figure 3). It will take an added 2000-3000 cfs at Wilkins Slough to keep the lower river below its 68°F limit This added release would represent about one foot of Shasta Reservoir water-surface elevation per week (Figure 4).

Sacramento Valley contractors have been given a 100% water allocation. South of Delta San Joaquin CVP contractors have been allocated only 40%. Reclamation is fully capable of meeting WRO 90-5 requirements, as it did historically. It is up to the State Board to enforce the CVP permit requirements. Given the state of the salmon populations, there should be no compromise on the permit requirements.

Figure 1. Reclamation report on Sacramento River temperatures through 24 April, 2018. Source: https://www.usbr.gov/mp/cvo/vungvari/sactemprpt.pdf

Figure 2. Water temperature at Red Bluff (RM 243), April 2018. Red line is limit requirement in WRO 90-5. Source: cdec.

Figure 3. Water temperature at Wilkins Slough (RM 118) April 2018. WRO 90-5 limit is 68°F. Water temperatures in excess of 65°F are highly stressful to juvenile salmon. Source: cdec.

Figure 4. Shasta storage characterization for water at the dam’s temperature control device (TCD), March 23 – April 22, 2018. Source: https://www.usbr.gov/mp/cvo/vungvari/ShastaTCD2018.pdf (See link for updates.)

Figure 5. Shasta Reservoir storage as of April 24, 2018.
Source: http://cdec.water.ca.gov/resapp/ResDetail?resid=SHA

  1. https://www.waterboards.ca.gov/waterrights/water_issues/programs/drought/sacramento_river/docs/2018/03142018_sac_temp_plan_ltr.pdf
  2. https://www.waterboards.ca.gov/waterrights/water_issues/programs/drought/sacramento_river/docs/2018/04022018response_90_5.pdf
  3. Note that Coleman Fish Hatchery on Battle Creek normally stocks 12 million fall-run smolts, but brood year 2014 salmon did not provide sufficient spawners (eggs for hatchery), and the hatchery thus produced only 6 million smolts in 2017. Hopefully, the 2 million smolts that have not yet been released will be trucked to the Bay.

Feeding Stripers Again

Oroville hatchery steelhead smolts being released into the lower Feather River near Boyd’s Pump in early February. CDFW photo.

State and federal agencies have begun stocking over a million steelhead smolts from Central Valley hatcheries into the Sacramento River and its tributaries.1 Fishing reports in the SacBee and other sources note that the annual stocking provokes a strong striper bite in the river, one of the more popular fisheries in the Central Valley.  The yearling smolts are the perfect food for stripers.

Shasta, Oroville, and Folsom reservoir releases are each at about 3000 cfs, low for mid-winter.  As a result, along with the record warm weather, river and Delta water temperatures (Figures 1-4) have been in the preferred range for striped bass feeding (55-65°F).

The federal Coleman hatchery near Redding released its steelhead smolts in January during high flows, before the warm weather arrived and stripers began feeding in earnest.  But at Thermalito Afterbay on the Feather River, the state is stocking a quarter of a million steelhead and feeding bass. And the feds are will be stocking a half-million endangered winter-run salmon hatchery smolts near Redding in February and March.

The striped bass will soon decimate the Feather River steelhead and will be well positioned for the annual April hatchery salmon smolt stocking season in April.  In the meantime, the stripers attracted by massive chumming will be knocking off the wild juvenile salmon and steelhead heading for the ocean.

Why do hatcheries continue to waste so many of the over 20 million salmonid smolts raised each year to mitigate for all the dams on Central Valley rivers?  Smolts cost more than $1 each to raise.

Hatchery managers and their partners need to barge hatchery steelhead and fall-run salmon smolts to the Bay.  Barging smolts would likely increase adult returns sharply in coming years.  Both steelhead and salmon populations are relatively homogeneous genetically, which reduces concerns about the effects of straying.  Coleman smolts should be barged from near Hamilton City.  Oroville smolts should be barged from Verona.  Nimbus smolts should be barged from Discovery Park.

If releases of hatchery smolts into the rivers are to continue, water managers need to at least provide pulsed flows from Shasta Reservoir to help the fish succeed in reaching the Bay and ocean.  Shasta storage is 106% of average.  A 5% allocation to pulsed flows would amount to approximately 140,000 acre-feet, enough for seven days of an 10,000 cfs extra flow to the Sacramento River.  Pulsed flows would also reduce water temperatures.  Hatchery managers should also not  release smolts into the rivers during warm spells that stimulate striper feeding.

State hatcheries plan some trucking of salmon smolts to the Bay-Delta this year, as they have done in past years.  Trucked fish should also be barged or at least taken to the Golden Gate, not just to Rio Vista.

In addition to barging and trucking, and pulsed flows, hatchery managers need to accelerate a pilot program to stock hatchery salmon fry into lower river and Delta floodplain habitats for rearing closer to the Bay.  In these habitats, fry would grow faster than their hatchery counterparts and get to the ocean quicker.

Anglers should take advantage of the great striper fishery.  But let‘s at minimum give the salmonid smolts some chance of reaching the ocean, so we can also once again have great salmon and steelhead fisheries.


Figure 1.  Water temperature in early February 2018 in the Sacramento River at the mouth of the Feather River

Figure 2.  Water temperature in early February 2018 in the Sacramento River below the mouth of the American River near Sacramento.

Figure 3.  Water temperature in the lower Sacramento River upstream of the mouth of the Feather River at Wilkins Slough

Figure 4.  Water temperature in the lower Sacramento River in the Delta near Rio Vista.