Winter-Run Salmon Update – August 2020

In my last update, March 2019, I summarized the population trends of winter-run Chinook salmon through 2017. In this post I include run estimates for 2018 and 2019. The trend indicates the population is recovering from the poor runs in 2016 and 2017 (Figures 1and 2), which were the consequence of poor spawning and rearing conditions.

The improvement is the result of more hatchery contributions and better natural contributions. The strong spawner-recruit relationship continues (Figure 3), with an improved 2019 run that spawned (in hatchery and wild) in summer of normal year 2016 and reared and emigrated during wet water year 2017. In contrast, the poor 2016 and 2017 runs were a consequence of critical drought conditions during spawning (2013 and 2014) and rearing/emigration (fall-winter of water years 2014 and 2015). The 2017 run could have been even worse had hatchery smolt releases not been doubled in winter 2015.

NMFS (2019) concluded the recovery was due to increased hatchery contributions and “better water management”. The latter is simply not true. Year 2017 was a wet year that contributed to good fall-winter survival of broodyear 2016 (Figure 4). By December 2019 NMFS knew that its draft biological opinion was being revised to limit protections.1

The prognosis for the 2020 run (from brood year 2017) is good given wet year summer spawning and incubation conditions in 2017 and normal year winter 2018 conditions. With hatchery stocking back to the normal 200,000 annual smolt level in the Sacramento River at Redding, a run of 3000-5000 can reasonably be expected despite the depleted spawning run in 2017. High summer egg-to-fry survival in 2017 (Figure 4) will also contribute. The 2020 run may also benefit from the initial release of 215,000 winter run hatchery smolts into Battle Creek in 2018. Some of these will return as two-year-old “jacks and jills” in 2020.

Several factors make the prognoses for the 2021 and 2022 (and future) runs less optimistic. Egg/fry survival of wild winter-run was lower again in 2018 and 2019 (Figure 4). The new (October 2019) federal Biological Opinion for winter-run is less protective than the Opinion it replaced,2 and the Bureau of Reclamation’s new water management is explicitly directed toward maximizing water deliveries.

On the positive side, hatchery releases including releases into Battle Creek continued in 2019 and 2020, and the estimates of migrating juvenile winter-run were higher for brood year 2019 in wet summer 2019 (Figure 5). As a result of a Settlement Agreement with CSPA, the State Water Board has required the Bureau of Reclamation to develop new protocols to meet water temperature requirements in the Sacramento River. It remains to be seen how these protocols translate into practice.

In the past three decades, the essential needs for winter-run salmon have not been met.3 Management of winter-run salmon must improve survival of wild eggs and juveniles in the summer spawning and fall-winter rearing-emigration seasons, with supplementary hatchery smolt releases as necessary. We cannot simply rely on wet years to keep wild winter-run salmon going in the Sacramento River.

Figure 1. Spawning population estimates of adult winter-run salmon in the upper Sacramento River from 1974 to 2019. Source: CDFW GrandTab and NMFS.

Figure 2. Spawning population estimate since 1997 showing proportion of hatchery and wild adult spawners. Source: NMFS (2019).

Figure 3. Spawners versus recruits (spawners three years later) transformed (logx minus 2). Year is recruit year spawners. For example, 2017 is the run size for 2017, representing spawners from brood year 2014. Color denotes water-year type in fall-winter rearing/emigration year: bold red is critical year, non-bold red is dry year, yellow is below-normal year, and blue is wet year. For example, red 15 and dot margin represent critical water year 2013. Yellow dot fill represents spawning year was a below-normal water year. Note 2016 and 2017 had both critically dry year summer spawning and fall-winter rearing-emigration. The blue 2019 point is a preliminary estimate.

Figure 4. First summer survival rate by brood year based on egg and fry production rate estimates. Egg number is derived from adult spawner estimates. Fry number is derived from Red Bluff screw trap estimates. Source: NMFS.

Figure 5. Brood year winter-run salmon early life history and abundance (2005-2019) as measured at Red Bluff. Source:


Partnership Shares Science to Find Fish and Water Solutions

“This month six California and federal agencies representing water management, fish, and wildlife, along with the Sacramento River Settlement Contractors, signed onto the Sacramento River Science Partnership. The Partnership establishes an interagency science collaborative in which members will develop, share and discuss science to inform water management activities and protection of fish in the mainstem Sacramento River.” (8/25/20 News Release)

  •  The seven signatories will foster and advance science to inform sustainable solutions to water management challenges including conflicts between water supply delivery and fish survival.

The time when anyone thought that the problems confronting Central Valley salmon could be solved with more science is long gone. The problems and solutions have not really changed in the 40+ years I have been involved. And the problems are only getting worse. Why is it so hard to address them?

The Problems

As a consequence of rainfall, snowmelt, reservoir storage and release, and water diversions, flows in the Sacramento River, have become so low and erratic that they strand salmon spawning redds and create prolonged high water temperatures in the juvenile rearing and migration reaches of salmon. It is a wonder that there are any wild salmon left. Without hatcheries, there would be few if any salmon in the Central Valley at all.

Spring-Summer Water Temperatures

Spring-summer water temperatures in the lower Sacramento River are bad. They kill salmon and sturgeon, block migrations, lead to poor juvenile salmon growth, early migration, high predation, and cause huge predation problems for young hatchery and wild salmon. The high temperatures exceed state water quality standards and water project permit requirements. Yes, water temperatures were bad during the 2013-2015 critical drought, as might be expected (Figure 1). But they have also been bad in the five normal and wet years (2016-2020) since the drought (Figure 2). The safe level is 65°F, but the standard is set at 68°F, above which stress and higher mortality occurs. 68° is supposed to be an upper limit that should not be exceeded, and in past decades it rarely was. It is now the accepted norm, and even then it is not enforced.

In 2020 (Figure 3) spring water temperatures were detrimental to the upstream migration of endangered winter-run and spring-run salmon, emigrating juvenile fall-run salmon, and larval and juvenile sturgeon. High summer temperatures hinder migration of adult fall-run salmon and are detrimental to survival of winter-run fry, over-summering late-fall-run and fall-run salmon smolts, and rearing juvenile sturgeon.

Fall Drops in Water Levels

Often, usually in October-November, flow releases from Shasta reservoir drop sharply in response to decreasing downstream irrigation demands. The decreases lead to fall-run salmon redd dewatering in the upper river spawning area near Redding and poor habitat and emigration flows for winter-run and late-fall run juvenile salmon.


Adult and juvenile salmon are stranded throughout the Sacramento River floodplain after winter-spring, high-flow events. In addition, drops in water surface elevation of four feet in the fall (Figures 4 and 5), soon after spawning de-water the vast majority of fall-run spawning redds in the 20-mile spawning reach downstream of Keswick Dam. Drops in flows after floodway weir spills (Figures 6 and 7) strand adult salmon and sturgeon that are migrating upstream, and also strand juvenile downstream emigrants in the Sutter and Yolo floodway bypasses.

Hatchery Releases

Releases of millions of hatchery-raised salmon and steelhead smolts in winter and spring into the lower Sacramento River from federal and state hatcheries compromise wild salmon and steelhead fry, fingerling, and smolt survival throughout the lower Sacramento River. Hatchery salmon and steelhead prey upon and compete with wild salmon and steelhead, and attract non-native predatory striped bass that also feed on wild salmon and steelhead.


A new science plan for the upper reaches of the lower Sacramento River is not going to solve the problems that stem from failure to act on what science has told us for decades.

Solutions to the problems outlined above abound. These solutions are well documented in the Central Valley Salmon and Steelhead Recovery Plan (NMFS 2014) and other stakeholder plans.1 The most important solution, is water temperature limits in the lower Sacramento River, which were adopted decades ago in state water permits and water quality control plans. These limits designed to protect salmon are simply no longer enforced.

Figure 1. Water temperature in the lower Sacramento River from 2013-2015 critical drought years near Grimes, CA. Also shown is average for the past 11 years of record.

Figure 2. Water temperature in the lower Sacramento River from 2016-2020 post-drought years near Grimes, CA. Also shown is average for the past 11 years of record.

Figure 3. Water temperature in the lower Sacramento River in 2020 near Grimes, CA. Also shown is average for the past 11 years of record.

Figure 4. Sacramento River flows in fall of 2013 below Keswick Dam near Redding.

Figure 5. Sacramento River water surface elevation in fall of 2013 below Keswick Dam.

Figure 6. Spills of water from Sacramento River over Tisdale flood control weir during the period from December 2013 to February 2015. Source: CDEC

Figure 7. Spills of water from Sacramento River over Tisdale flood control weir during the period from January 2016 to May 2017. Source: CDEC

Saving Native Central Valley Salmonids

No, the fish below is not a Central Valley salmon or trout. It is a Yellowstone Cutthroat Trout from the Yellowstone River in Yellowstone National Park. This iconic species is beginning to recover from competition and predation by non-native brook, brown, rainbow, and lake trout. Yellowstone Park over the past decade has carried out an intensive eradication program of the non-native salmonids to save the iconic native cutthroat. A similar program has been underway to save the Snake River Cutthroat on the South Fork of the Snake River from Grand Teton Park in Wyoming downstream into Idaho. The eradication programs include rotenone poisoning of tributaries, gill-netting (lake trout in Yellowstone Lake), and regulations requiring angler removal (rainbow trout).

Yellowstone Cutthroat Trout caught and released in the Yellowstone River in Yellowstone National Park summer 2018

California has excellent programs to protect some of its iconic trout and salmon through strict regulations and habitat protection and enhancement.

  • Redband Rainbow Trout in the upper McCloud River
  • Golden Trout in the upper Kern River
  • Lahontan cutthroat of the Truckee drainage.
  • Coastal cutthroat (NorthCoast streams)
  • Paiute cutthroat of the eastern Sierras.
  • Winter Run Chinook salmon (endangered) spawning grounds upstream of Redding are now closed to trout angling.
  • Spring Run Chinook Salmon (threatened) spawning tribs protected
  • Wild steelhead – no harvest in mark-selected fisheries (photo below)

Wild Rainbow Trout/Steelhead caught and released in the lower Yuba River near Marysville January 2019.

One survival bottleneck that needs opening for salmon and steelhead in the Central Valley is predation by non-native fish. There is a long list of non-native and native predators from which native fish need protection. The best protection is to minimize native-nonnative habitat interactions. That can best come from adequate physical-geographical habitat and habitat water quality for natives while minimizing non-native fish habitat. Changes are necessary because of global warming and continually increasing demands on water. Stream flows are too low, water temperatures are too high, waters are clearer, and in-stream cover is low, factors that all favor non-native predators and competitors.

Because many of the non-natives are sportfish with strong angler followings, non-lethal controls best serve to reduce overall predation effects on native fishes.

  • Provide natural spring flow pulses in rivers and tributary tailwaters to help emigrating salmonids avoid predators.
  • Keep water temperatures lower in rearing habitat and migrating routes of native fish.
  • Maintain the low salinity zone, the primary rearing area for native fishes, in the Bay downstream of the Delta.

At some point population controls on non-native fish may have to be considered despite their inherent problems and low potential for success.1 Note that despite the use of 50 miles of gill nets and removal of hundreds of thousands of pounds of lake trout each year in Yellowstone Lake, lake trout remain abundant. Predator control through removal would be far more difficult in the Central Valley and Bay-Delta.

Summary and Conclusion

I remain skeptical on how effective the individual actions can be, but a comprehensive multi-action program such as that employed for the Yellowstone Cutthroat Trout has some chance of success. Such a program would come with tough choices and require considerable resources, but may need to be part of saving Central Valley salmon and steelhead. Focus should be on increasing the amount of native fish habitat and bettering spawning, rearing, and migratory habitat conditions.


A Case for Better River Flows and Delta Outflow in June

When the State Water Board gets around to finally updating decades-old Central Valley water quality standards, it should bring back some old spring standards, keep some good ones, and add some new ones to provide essential protection to salmon, steelhead, sturgeon, smelt, and many other native fish populations.  One focus should be on improving survival of wild spring-run and fall-run salmon smolts migrating from Central Valley spawning rivers to the Delta, Bay, and ocean.

With its high spring water temperatures (Figure 1), 2020 is a good example of a solvable problem.  The survival of wild spring-run and fall-run salmon smolts depends on sufficient flows and low water temperatures in the spring.  This natural selection process, once tied to the natural spring snowmelt cycle,  has been disrupted by reservoir storage and water diversions.  Wild smolt emigration peaks in spring and extends into early summer (Figure 2).  Sturrock et al. (2019) found that late spring smolt survival suffered from poor emigration habitat conditions.  This affects population diversity because of the disproportionate loss of wild smolts in the late spring.

June Delta Exports

June exports in recent wet years (2011, 2017, and 2019) have averaged 9000-11,000 cfs under the State’s current State D-1641 standards.  This is a new impact (since 1995) that has manifested itself in a decreased proportion of wild fish in the salmon runs, thus threatening the very integrity of the populations and commercial and sport fisheries.  Under the previous D-1485 standards, south Delta project exports in June were limited to 6000 cfs in all year types.

June River Flows and Water Temperatures

June river flows should be sustained to help move smolts downstream and maintain water temperatures below stressful levels (less than 68°F/20°C).  River flows need to be adequate to keep water temperatures in the lower sections of the Sacramento River below 68°F/20°C, as recognized in the Central Valley Basin Plan’s water quality standard.  The flows needed to maintain water temperatures depend on air temperatures.  Over the past decade, water temperatures have exceeded the target in June in the lower Sacramento River even in wet years 2011, 2017, and 2019 (Figures 3 and 4).

June Delta Inflow

June Delta inflows need to be of sufficient magnitude to help salmon smolts pass through the Delta in a timely fashion, and not get diverted off-course toward the south Delta export pumps or succumb to huge numbers of predator fishes.  June flow entering the north Delta at Freeport needs to be maintained near 20,000 cfs to maintain water temperatures near 68°F/20°C (Figure 5).

June Delta Outflow

With 20,000+ cfs inflow and south Delta exports limited to 6,000 cfs, Delta outflow will be 10,000+ cfs (the other 4,000 cfs is from within-Delta diversions).  This is sufficient to keep the Low Salinity Zone west of the Delta and salmon smolts moving toward the Bay and Ocean.


In conclusion, the present year-round water temperature standard for the lower Sacramento River, 68°F/20°C, should be sustained through June.  New State Board standards should limit south Delta exports in June to 6,000 cfs to protect wild salmon smolts that are emigrating from Central Valley rivers.

Figure 1. Water temperature in the Sacramento River in the north Delta in spring 2020, along with recent 22-year median daily average. Water temperatures above 68°F/20°C severely stress emigrating salmon smolts. Water temperatures above 75°F/24°C are lethal to salmon. Water temperatures above 70°F/21°C hinder or block the migration of adult winter-run and spring-run salmon as they move upstream in spring.

Figure 2. “Timing of ocean entry of fish released from the Feather River hatchery (blue) and wild out-migrating (red) from 2002 to 2010. The area of each violin represents the proportion of fish out-migrating at that Julian day and is normalized to the total abundance of outmigrants for that year. The black lines represent the interquartile range (first to third quantiles). Hatchery release data for the Feather River Hatchery (FRH) are from Huber and Carlson (2015). Data for ’wild’ (unmarked) fall-run sized outmigrants are from the USFWS Chipps Island Midwater Trawl.” Source:

Figure 3. Sacramento River flow and water temperature at the Verona gage just downstream of the mouth of the Feather River, 2008-2017. July 1 for each year is equidistant between the vertical lines.

Figure 4. Sacramento River flow and water temperature at the Wilkins Slough gage upstream of the mouth of the Feather River, 2008-2020. July 1 is one-quarter and three-quarters distance between each of the two-year period vertical lines.

Figure 5. Sacramento River flow and water temperature at the Freeport gage in the north Delta downstream of the mouth of the American River, 2016-2020. June flows (immediately to left of July 1 lines) of 20,000 cfs maintain water temperatures near 20°C.


American River Salmon Shortchanged

The American River fall-run Chinook salmon are often referred to as a hatchery run. They are confined to the lower 20 miles of river below Folsom-Nimbus dams and are supplemented by Nimbus Hatchery smolt releases. Adult escapement (run size) is estimated from hatchery counts (Figure 1) and in-river spawning surveys (Figure 2). The run peaked with 100,000+ spawners from 2000-2004, after six wet years (1995-2000) and the initiation of large-scale releases of hatchery smolts to the Bay beginning in 1995 (Figure 3). After the initial success of Bay releases, the total numbers of smolts released dropped from the 8-12 million range to 4-5 million around the year 2000.

Since 2010, more releases have been shifted back to the river. The shift seems appropriate in wetter years like 2010, 2011, 2017, and 2019, but not in drier years like 2012, 2013, 2016, and 2018.1 Adult returns from dry year releases have been 2-to-7 times higher for Bay releases than for river releases. In 2020, a dry year, releases to the river occurred in early May, when downstream water temperatures were above the 68°F/20°C stress limit for juvenile salmon (Figure 4).

Unless winter-spring flows and water temperatures in the American River and Delta are improved,2 and problems with water temperatures during the fall spawning season are fixed,3 wild and hatchery production from the American River will continue to suffer. Until these issues are resolved, continued releases of American River hatchery smolts to the Bay remain necessary to sustain the salmon run.

For more on the American River hatchery program, see and .

Figure 1. Fall-run salmon in-river escapement estimates for the American River (1952-2018).

Figure 2. Fall-run salmon hatchery escapement estimates for the American River (1955-2018).

Figure 3. Nimbus Hatchery releases to the American River (in-stream) and to the Bay 1991-2019.

Figure 4. Sacramento River water temperature (degrees C) in the northern Delta downstream from the mouth of the American River, from mid-April to mid-May 2020.