Welcome to the California Fisheries Blog

The California Sportfishing Protection Alliance is pleased to host the California Fisheries Blog. The focus will be on pelagic and anadromous fisheries. We will also cover environmental topics related to fisheries such as water supply, water quality, hatcheries, harvest, and habitats. Geographical coverage will be from the ocean to headwaters, including watersheds, streams, rivers, lakes, bays, ocean, and estuaries. Please note that posts on the blog represent the work and opinions of their authors, and do not necessarily reflect CSPA positions or policy.

Klamath River Salmon and Steelhead Recovery – The Future

After dam removal, the plan for recovering Klamath River salmon and steelhead is relatively straightforward.

Oregon is going to focus on watching to see how steelhead repopulate the upper watershed and on having a more active role in developing spring-run Chinook salmon populations.  Without an existing spring-run stock, Oregon will try establishing one by out-planting stock from California’s Trinity River Hatchery.

California will focus on recovery of existing lower river spring-run Chinook and fall-run Chinook, Coho, and steelhead stocks.  The new Fall Creek Hatchery will sustain the fall-run Chinook, Coho, and steelhead stocks formerly produced at the now-closed Iron Gate Hatchery.  Lower and middle river wild spring–run and fall-run Chinook, Coho, and mainstem and tributary steelhead stocks should expand with improved water quality and access to new habitat.  Historical tributaries offer great potential as does the spring-fed reach of the mainstem near the Oregon border.

In the decades ahead, as the populations and habitat recover, state, federal, tribal, and stakeholder groups will work together toward Klamath salmon and steelhead recovery.

There will be a need to coordinate management of the three H’s:  hatcheries, harvest, and habitat.  Existing hatchery programs should be converted to a single conservation hatchery program focused on salmon and steelhead recovery.  Such a program will need a new hatchery to support the recovery of Klamath spring-run Chinook, as in the San Joaquin River Restoration Program.  The Pacific Fishery Management Council and the two states will have to protect the recovering populations with strict harvest regulations.  Considerable funding will be needed to restore fire-damaged and drought-damaged watersheds, former reservoir footprints, mainstem and tributary fish passage, and spawning and rearing habitat.

Water supply management will remain contested and challenging.  Adequate funding, cooperative efforts, and adaptive management will bring success.

Klamath Dam Removal Update – April 6, 2024

Video Screen Grab of lower Jenny Creek ASSISTED SEDIMENT EVACUATION PROJECT

In a March 20 post, I related events in the Jan-Feb 2024 period of the Klamath Dam Removal Project.  The initial four-reservoir drawdown in January led to abrupt increases in streamflow, suspended sediment, and low dissolved oxygen levels above and below Iron Gate Reservoir (the lower reservoir).  This was followed by lower stable streamflow, high dissolved oxygen, and declining suspended sediment.  Streamflow pulses from upstream Klamath Lake in late February and early March resulted in (short-term) elevated suspended sediment from exposed sediment erosion in the four reservoir reaches.  These circumstances were expected as part of the four Dam Removal Project.

In March, the Assisted Sediment Evacuation Project began in the Jenny Creek floodplain of the Iron Gate Reservoir footprint.   That project has led to lethal doses of suspended sediment (turbidity) in the lower Klamath River below the Iron Gate Dam site (Figures 1-3).  Project approvals, such as the National Marine Fisheries Service’s (NMFS) biological opinion quoted below, included provisions to stabilize sediments after the January drawdown, but not to flush sediments into creeks and the Klamath River.

Post drawdown and dam removal, crews will be working to actively restore the exposed reservoir footprints and tributary mouths that flow into the former reservoirs. To reduce elevated suspended sediment concentrations (SSCs), the Renewal Corporation will take active measures to flush sediment from the reservoirs during drawdown and then immediately begin stabilizing remaining sediment after drawdown has been completed. Revegetation, channel construction, and placement of habitat features such as logs and boulders will minimize erosion and allow passable channels to form in preparation of fish presence. (NMFS Biological Opinion p. 14)

The origin of the high suspended sediment levels was likely from the exposed bed of Iron Gate Reservoir (particularly the Jenny Creek arm), not upstream reservoir erosion during the Klamath Lake flow pulses.  Sediment levels below Iron Gate Dam were low during the flow pulse that diluted the high sediment loads from Iron Gate Reservoir (Figure 1).  Gages below Copco and JC Boyle reservoirs were lower, generally below lethal levels (Figure 4).

Chinook salmon fry are abundant and most prevalent in the lower Klamath River below Iron Gate Dam in late winter (February-March).  Coho and steelhead fry are more abundant later during spring.

The Assisted Sediment Evacuation Project is slated to end on April 15.  I recommend that it cease immediately, with efforts shifted to “stabilizing remaining sediment,” in order to minimize impacts of the project on Klamath River salmon and steelhead.

Figure 1. Turbidity and streamflow in the Klamath River below Iron Gate Dam (rm 193) in January to March 2024. Note turbidity of 300-500 SBU is roughly 1000-2000 mg/l total suspended sediment (TSS). Such levels are considered lethal for juvenile salmon and steelhead.

Figure 2. Turbidity and streamflow in the Klamath River near Seiad Valley below the mouth of the Scott River (rm 145) in March 2024.

Figure 3. Turbidity and streamflow in the Klamath River near Seiad Valley about ten miles upstream from the mouth of the Scott River (rm 145) in March 2024.

Figure 4. Turbidity and streamflow in the Klamath River just upstream of Iron Gate Reservoir and below Copco dams in March 2024.

Klamath River Update – March 2024

On March 2, CDFW reported the mortality of recently released (Feb. 28) salmon fry from the new Fall Creek Salmon Hatchery located on a Klamath River tributary upstream of the site of the recently removed Iron Gate Dam. The Iron Gate Hatchery located at the foot of the dam site was removed with the dam and replaced by the Fall Creek Hatchery. Mortality of the salmon fry was attributed to gas bubble disease caused by the fry passing through the Iron Gate Dam release tunnel.

Iron Gate Reservoir and the three upstream reservoirs were emptied beginning on January 11 prior to dam removal. As the reservoirs were drained, the gage below Copco Dam picked up a large increase in turbidity with an associated complete loss of dissolved oxygen (Figure 1). Oxygen returned to the water after several days despite continued high turbidity. This indicated the initial dissolved oxygen loss was likely related to the flush of organic sediment from the bottom of the reservoirs as the draining neared completion. After the flows stabilized (Figure 2) and water level in the river had dropped six feet by the end of January, turbidity dropped and stabilized near 3000 mg/l suspended sediment, and normal high dissolved oxygen returned. Turbidity was measured using three parameters (Figure 3).

The hatchery salmon fry released on February 28 were subjected to a Klamath River with elevated turbidity (suspended sediment concentrations above 2000 mg/l). Such concentrations for extended exposure (days) are highly detrimental to salmon fry.1 The combination of high suspended sediment and gas bubble disease likely has contributed to poor juvenile salmon production this year in the lower Klamath River.

The removal of the Klamath River dams will have substantial long-term benefits for salmonids. As the dam removal process proceeds, it is important to mitigate the short-term impacts of high turbidity levels to the degree possible. Continuing high turbidity events (see March levels in Figure 3) do not bode well for hatchery or wild salmon in the Klamath this year. With nearly 4 million juvenile Chinook salmon yet to be released from the Fall Creek Hatchery this year, it would be wise to either wait for next fall to release them or truck the smolts to the Klamath estuary.

Figure 1. Water level, suspended sediment, and dissolved oxygen in the Klamath River above Iron Gate Reservoir and mouth of Fall Creek, January 16 to March 10, 2024.

Figure 2. Streamflow below the Iron Gate Dam site January 1 to March 10, 2024. Source: USGS.

Figure 3. Suspended sediment and turbidity upstream of Iron Gate Reservoir above the mouth of Fall Creek near Copco, January 16 to March 10, 2024.

  1. Newcombe, C.P., and J.O.T. Jensen. 1996. Channel suspended sediment and fisheries: a synthesis for quantitative assessment of risk and impact. North American Journal of Fisheries Management. 16:693-727.

2024 Salmon Season in Doubt

On March 1, 2024, the California Department of Fish and Wildlife (CDFW) held its CDFW Annual Salmon Information Meeting via a webinar. The prognosis for a 2024 salmon season does not look good.

The closure of all California salmon fishing in 2023 brought an uptick in salmon escapement to 133,000 in the Sacramento River, which is somewhat positive. The forecast for this year’s fishable stock in the ocean (made up of broodyears 2021-2023), however, is not much better than last year’s, with the lingering effects of the 2020-2022 drought. If a normal fishery had been held last year or were to be held this year, the salmon stocks would no doubt fall into an “over-fished” status.

Notable points of interest:

  • Without fishing in 2023, there was an uptick in the relative percentage of four-year-old spawners, especially in the Klamath system. This was likely related to the fishery closure and strong production from broodyear 2019.
  • There seemed to be significant concern that a higher fishable stock level was important for the good of the endangered southern Orca population that feeds primarily on Chinook salmon.
  • The fisheries agencies appear more comfortable with a fishable stock well over 180,000 than with the forecasted 213,000 for 2024. Note that the 2024 forecast was based on jacks from broodyear 2021 that returned in 2023 that were produced in the heart of drought years 2021 and 2022. Jack numbers are representative of age three adult return numbers the following year (2024).
  • Not a word of concern was expressed for protecting wild, natural-born returning salmon.
  • There was no mention of prescribing a mark-selective fishery despite the recent adoption of such a measure for Columbia River Chinook salmon and its universal use in Coho salmon and steelhead fisheries.

Nothing was said about the possibility of at least experimenting with mark-selective fishing, wherein harvest is allowed on fin-clipped hatchery salmon, a practice prescribed with increasing frequency in Pacific Northwest salmon fisheries. I believe the fishable stock (age 2-4) of marked salmon in the ocean in 2024 is about 300,000.1 A mark-selective fishery could harvest 200,000 of these fish without harming spawning stocks of wild or hatchery fish.2

Sport and commercial fishermen should advocate for a mark-selective fishery in 2024 rather than a second consecutive year of a closed fishery. The Pacific Fishery Management Council is setting harvest control rules for California fishing in early March.3

Catch-and-Release and Mark-Selective Fisheries Providing Salmon for the Future

Current proposals by various governmental officials and agencies are not adequate to protect public trust fisheries. The Central Valley fall-run salmon escapement fell below 100,000 in 2022, levels not seen since the 2008 and 2009 drought (Figure 1). Spawning numbers in the upper mainstem Sacramento River near Redding were below 5000 in 2022, record low levels also not seen since 2016 and 2017 (Figure 2). Fall-run salmon escapement numbers for the entire Sacramento River showed a similar pattern (Figure 3). Salmon fisheries were closed in 2009 and 2023 to ensure against over-fishing.

The upper mainstem fall-run salmon population was historically the backbone of Central Valley salmon escapement and fisheries. That population and its natural-born component has crashed and is need of immediate attention. Otherwise, hatcheries will be shut down, no fisheries will be allowed to protect wild fish, and salmon will go the way of the condor. Aggressive action is needed to save the salmon and salmon fisheries.

In a December 2023 post, I suggested California adopt mark-selective salmon fisheries – harvest of only hatchery fish and catch-and-release of unmarked wild and hatchery fish (only about 25% of hatchery smolts are marked). This would protect wild salmon and allow harvest of hatchery salmon. It is a strategy that is now commonplace in the Pacific Northwest. 1

Informal feedback on the suggestion has been mostly negative.  Commercial fishermen really don’t like the idea, because they would prefer a quota.  Otherwise, they would have high bycatch mortality (20+%) of wild or unmarked fish.  They already kill too many undersized fish that they have to release.  Sport fishermen have similar concerns, although they admit they use gear and techniques that have lower release mortality.  Fisheries agencies simply don’t like the added management problems.  In the end, all these entities would rather close the fishery down next year and let the stocks rebuild.  However, the rebuilding will take years.  Many hatchery salmon will go to waste.

There is a solution that would allow salmon fisheries without driving wild salmon populations to extinction.  All hatchery smolts should be marked to differentiate them from wild (natural-born) salmon. The practice would allow mark-selective fisheries.  All hatchery smolts should also be transported to the Bay or coast for release.  This would ensure high hatchery smolt survival and relieve the competition with wild fish in rearing and migrating reaches of the rivers and Bay-Delta estuary.  It would also likely reduce predation on wild juvenile salmon in the rivers and Bay-Delta estuary, because hatchery smolts in rivers and the estuary attract predators.

To participate in the fishery, commercial and sport fishermen would have to modify gear and methods to reduce bycatch mortality.  Agencies would have to provide more education/information, rules, and more monitoring and assessment.  Through information gathering and experience, it may be possible to focus fishery effort toward areas and times more frequented by hatchery salmon and where bycatch mortality is minimal.  With these additions, the fisheries agencies could focus more on wild salmon recovery, while ensuring the hatchery program and its fisheries are efficient and effective.

Figure 1. Total escapement of four salmon runs in the Central Valley 1975-2022.

Figure 2. Upper Sacramento River Fall-Run Salmon escapement from 1952-2022. Coleman is hatchery counts. Others are mainstem and upper Sacramento River tributary spawning surveys.

Figure 3. Sacramento River Fall-Run Salmon escapement from 1975-2022.