Trucking Central Valley Salmon Smolts from Hatcheries to Salt Water

A November 1, 2023 article, originally published in High Country News and later posted in Maven’s Notebook, describes the practice of trucking juvenile salmon from hatcheries for release in salt water as a “culprit,” stating: 

According to a growing body of scientific evidence, it’s also the reason that many salmon are getting lost on their way back to their birth rivers, placing the future resilience of the species at risk…. These trucked hatchery fish may survive longer in the short term, but they will return to the river system years later with massive gaps in their memory and little sense of how to locate their spawning grounds. Instead, many end up wandering up unfamiliar rivers or streams and spawning far from home.

What the article doesn’t say is that juvenile salmon released directly in San Francisco Bay or San Pablo Bay, or in the ocean, are as much as ten to a hundred times more likely to live to spawn as are juvenile fish released near their hatcheries of origin.

It is true that trucked hatchery salmon smolts have a higher “straying” rate than smolts that are released near the hatcheries in which they were raised.  Sometimes, that difference in straying is quite dramatic.

On the other hand, while straying does cause salmon to wander into Central Valley rivers other than those from which they came, most of the rivers to which they stray would have few if any salmon at all if it were not for these strays.  And right now, trucking is necessary for the water projects to meet their mitigation goals of putting salmon back into the ocean to sustain salmon fisheries.

Furthermore, if it were not for trucking, the investment of hundreds of millions of dollars in salmon hatcheries would largely be for naught.  Only in wetter years do releases of hatchery-raised salmon near the hatcheries come anywhere close to achieving hatchery production goals.  In the drier years, when hatcheries provide their greatest benefit, very few fish released at or near the hatcheries survive downstream migration through Central Valley rivers and the Bay-Delta.

Trucking also reduces the competition between hatchery smolts and wild fish for limited habitat downstream of the Valley’s rim dams.

Below, I provide examples of straying rates for the Mokelumne Hatchery and Coleman Hatchery, from which some of the highest percentages of straying occurs.  The American and Feather River hatchery releases also have elevated straying of trucked smolts, but at much lower rates.

Mokelumne River Hatchery Straying

One of the greatest straying problems is from the Mokelumne Hatchery smolt releases, especially in drought years.  The Mokelumne Hatchery trucks more smolts percentage-wise than the other six salmon hatcheries.  However, coastal releases of Mokelumne Hatchery fish in drought years 2014 and 2015 yielded returns of 0.79-1.15% compared to 0.01% from the river release below the hatchery (Table 1).

However, straying rates for coast releases were greater than 50% to other rivers and hatcheries compared to 0% for the Mokelumne River releases (Figures 1-4).

Table 1.  Mokelumne Hatchery selected release groups – number and survival rates

 Coleman (Battle Creek) Hatchery Straying

Coleman Hatchery smolts trucked to the Bay have a much greater rate of straying than smolts released near the hatchery near the mouth of Battle Creek near Redding (Figures 5 and 6).  However, smolts released near the hatchery have a much lower survival/return rate (Table 2).

Table 2.  Coleman Hatchery selected release groups – number and survival rates.

Stray Counting

Other than showing up in these figures, strays are not accounted for in escapement estimates for individual rivers, and they are not counted in return tabulations of their hatchery of origin.  Fish counted at a hatchery or in river surveys simply get accounted for in the escapement estimate for the river to which they return.  As an example, tabulations for returns to the American River (Figure 7) show that in 2015, about a quarter of the tabulated escapement originally came as strays from the Mokelumne Hatchery.

Conclusion

It is good practice to reduce straying of hatchery salmon.  But in my view, arguments about straying often tend to obscure, not improve, the problems of poor survival of both wild and hatchery salmon in dry years due to inadequate flow and other aspects of poor water management.  And as long as commercial and sport salmon fisheries in California and Oregon are substantially dependent on hatchery production in the Central Valley, it makes a lot of sense to prioritize the survival to adulthood of hatchery salmon over their fidelity to natal rivers and streams.

For more on the trucking of juvenile hatchery production, see: https://calsport.org/fisheriesblog/?s=trucking&submit=Search

Figure 1. Returns from a Mokelumne Hatchery release to Golden Gate in 2014. Yellow dot is hatchery location. Green dot is release location.

Figure 2. Returns from Mokelumne Hatchery release to Santa Cruz Harbor in 2014.

Figure 3. Returns from Mokelumne Hatchery release to Moss Landing in Monterey Bay in 2015.

Figure 4. Returns from Mokelumne Hatchery release to lower Mokelumne River in 2014.

Figure 5. Coleman Hatchery 2014 smolt release group returns. Green dot is release site.

Figure 6. Coleman Hatchery 2014 smolt release group returns. Green dot is release site.

Figure 7. Green wedges are proportion of tags recovered in the American River in 2015 whose origin was the Mokelumne River Hatchery. Source: Pacific Fisheries Management Council.

Super Moon #4 – Harvest Moon (9/28/23)

The Harvest Moon is the full moon nearest the autumn equinox (in 2023, the equinox was on 9/22).  The Harvest Moon greets fall-run salmon returning from the ocean to the Central Valley.  Unlike the previous two full moons, the 2023 Harvest Moon is coincident with improved conditions for fish.

The last two full moons, the Sturgeon Moon and the Blue Moon, wreaked havoc on the Bay by contributing to warm water and algae blooms (Figure 1) and to the associated low dissolved oxygen levels that led to sturgeon mortality in the Bay (Figures 2-4).  Low Delta water inflows and outflows contributed to the problems.1  The fish kills that occurred in the Bay were generally a consequence of poor water quality brought on by high summer water temperatures, associated algae blooms, and low dissolved oxygen levels (hypoxia).

Water temperatures above 20oC/68oF bring about stressful conditions, while those above 22oC/72oF lead to lethal conditions such as those that occurred in summer 2022 and summer 2023.  Other effects of warm water include plankton blooms and low dissolved oxygen levels that result from the algae die-offs after such blooms.  Though there is no direct evidence of the magnitude of mortality events, there is evidence that such events may have occurred in the Bay in summer 2022 and summer 2023.  Summer conditions in 2022 and 2023, and perhaps prior years, were likely major trauma incidents that had significant short-term and perhaps long-term effects on the sturgeon populations of the San Francisco Bay Estuary (Bay-Delta Estuary).

The warm water and algae blooms in the Bay abated early in September 2023.  Water quality improved with the advent of cooler air temperatures and with the higher Delta outflows (Figure 5) associated with the Fall X2 requirement from the Delta Smelt Biological Opinion (US Dept. of Interior).  The cooling of the water ensured that salmon could safely make their fall runs into the Central Valley rivers during the Harvest Moon, the last super moon of 2023.

Figure 1. River water stage (elevation) and water temperature at Rio Vista Bridge in Sacramento River channel of the Delta near exit to the Bay. Stage drops (draining of the Delta toward Bay) occurred prior to and after the four Super Moons of summer 2023. Note the warm water (74-75oF) draining from the Delta during the two mid-summer drain periods.

Graph of Water temperature (C), dissolved oxygen (DO, mg/l), and chlorophyll (mg/l) in western Suisun Bay in summer 2023.

Figure 2. Water temperature (C), dissolved oxygen (DO, mg/l), and chlorophyll (mg/l) in western Suisun Bay in summer 2023. Note algae bloom at end of July that began during the warm water period. Note very low DO (<6 mg/l) after bloom die-off in August.

Graph of Chlorophyll concentration (mg/l) in 2022 and 2023 in Suisun Bay.

Figure 3. Chlorophyll concentration (mg/l) in 2022 and 2023 in Suisun Bay. Note two summer algae blooms in red circles.

Graph of Dissolved oxygen concentration (mg/l) in 2022 and 2023 in Suisun Bay.

Figure 4. Dissolved oxygen concentration (mg/l) in 2022 and 2023 in Suisun Bay. Note low levels after two summer algae blooms in red circles.

Graph of Daily average flow in summer 2023 and 25-year average at Rio Vista in the lower Sacramento River channel of the Delta leading into Suisun Bay. Late August and September increases are related to the Fall X2 requirement of Delta water projects in wet years.

Figure 5. Daily average flow in summer 2023 and 25-year average at Rio Vista in the lower Sacramento River channel of the Delta leading into Suisun Bay. Late August and September increases are related to the Fall X2 requirement of Delta water projects in wet years.

Sturgeon Moon #3 – August 30 Blue Moon

August 2023 has come to an end, following the second “Super Moon” of the month – a Blue Moon. The first full moon of the month was called a “Sturgeon Moon,” originally coined in reference to the ease of catching sturgeon in the Great Lakes during a full moon in summer. The cycle began with the quarter moon and neap tide on July 24 until the full moon on August 1.1

This year’s Super Moons have made a mess of San Francisco Bay, as they did in summer 2022. This year’s August moons have again, regrettably, led to a die-off of sturgeon and other Bay fish.2 The Super Moons’ strong tides caused warm water from the Delta to drain into the Bay, making the usually cool Bay unseasonably warm. (The ocean Blob may have added to some of this summer’s warm Bay water.) The warm water and the associated algal blooms (and their die-offs) have led to unprecedented low dissolved oxygen levels in the Bay, which can kill fish.

While the degree of harm has not been as bad as last year’s summer blooms that were aggravated by the 2022 drought, this year’s algal blooms have also harmed fish despite generally beneficial wet-year conditions. Last summer, there was die-off of nearly a thousand adult white sturgeon in the greater San Francisco Bay due to algal blooms. More dead white sturgeon adults also showed up on Bay beaches again this summer.3

The Bay turned warmer under this summer’s Super Moons than under those last summer (Figure 1). Blooms are still happening, as indicated by high turbidities and chlorophyll levels in portions of the Bay (Figures 1-3). The draining of warm Delta water to the Bay just before the 2023 Super Moons (Figures 4 and 5) warmed the Bay (Figure 6). Low dissolved oxygen continues to plague the Bay (Figure 6). The most recent bloom is depicted in Figures 7 and 8.

The summer 2023 Super Moons and their algal blooms make a complicated story, with the effects of various factors implicated in the blooms, and their role in fish die-offs in the Bay, yet to be fully determined. My concern centers on how warm the Delta becomes in summer before it drains into the Bay during the lunar tidal cycles (Figure 9). The lower rivers and Delta received too little flow from major Central Valley reservoirs for a wet year with full reservoirs. This is an increasing trend that deserves a lot more attention to ensure protection of the Bay’s fish and other public trust values. Otherwise, the trend will simply be chocked up to climate change.

Graph of North Bay (San Pablo Bay at Richmond Bridge) water temperature and turbidity in summer 2023.

Figure 1. North Bay (San Pablo Bay at Richmond Bridge) water temperature and turbidity in summer 2023. Note the presence of the three blooms indicated by high turbidity levels (>100 FNUs)

Graph of Chlorophyll levels at Martinez CA gage between East and North San Francisco Bay in summer 2023.

Figure 2. Chlorophyll levels at Martinez CA gage between East and North San Francisco Bay in summer 2023. Note three periods (green circles) of blooms located at this site.

Graph of Chlorophyll levels at Grizzly Bay gage (in northwest East Bay) in summer 2023.

Figure 3. Chlorophyll levels at Grizzly Bay gage (in northwest East Bay) in summer 2023.

Graph of Salinity (EC) at eastern Suisun Bay gage (in east Bay) in summer 2023.

Figure 4. Salinity (EC) at eastern Suisun Bay gage (in east Bay) in summer 2023. Red arrows indicate periods of draining prior to and between full moons.

Graph of Daily average (tidally filtered) discharge at Pittsburg gage in Suisun Bay summer 2023.

Figure 5. Daily average (tidally filtered) discharge at Pittsburg gage in Suisun Bay summer 2023. Red circles indicate drainage rates to Suisun Bay prior to two Super Moons (August 1 and 30).

Graph of Hourly dissolved oxygen levels in Grizzly Bay in summer 2023.

Figure 6. Hourly dissolved oxygen levels in Grizzly Bay in summer 2023. Note inverse relationship with chlorophyll levels in Figure 4. The low dissolved oxygen levels (<5 mg/l) began with the first bloom (August 1) and continued through August. Also note the Bay water quality standard is a minimum 6 mg/l dissolved oxygen level for fish health.

Satellite imagery of chlorophyll levels in San Francisco Bay on 8/29/2023.

Figure 7. Satellite imagery of chlorophyll levels in San Francisco Bay on 8/29/2023.

Graph of water temperature, chlorophyll, and salinity in Suisun Bay in summer 2023.

Figure 8. Water temperature, chlorophyll, and salinity in Suisun Bay in summer 2023. Note algal bloom in late August that began after the late-August draining of the Delta into the Bay when water temperatures reached 24oC (75oF).

Graph of San Francisco Bay water temperatures from 2007-2023.

Figure 9. San Francisco Bay water temperatures from 2007-2023. Note 2023 reached 70oF (see Figure 2) a recent record reached not even reached in critical drought years 2014, 2015, and 2022.

  1. Spring tides always happen when the Moon is at the full or new phase, which is when the Sun, Moon and Earth are in alignment. Neap tides occur around the first and last quarter phase of the Moon, when the Moon’s orbit around Earth brings it perpendicular to the Sun.
  2. https://calsport.org/fisheriesblog/?p=4398
  3. https://www.sfchronicle.com/climate/article/fishkill-18279379.php

Sturgeon Moon 2 – August 30

In an August 9 post, I described the effects on San Francisco Bay and its sturgeon from the August 1 Sturgeon Moon.  I hypothesized that the draining of warm water from the Delta into the Bay over several days of the strong neap tide during the Sturgeon Moon caused an algae bloom and unseasonably warm water in the Bay (Figure 1) that was killing sturgeon, as it had in summer 2022.  I blamed the warm water on low river flows and high water diversions in the Central Valley that caused the Delta to reach 75oF and the Bay to subsequently reach an unprecedented 72-73oF.  The warm water, abundant sunshine, and generally high nutrients caused the bloom and the low dissolved oxygen levels that resulted in fish dying.

These events are about to reoccur with the August 30 Super Moon.  Once again, warm water will drain from the Delta on several days of strong neap tides the week before the Super Moon (probably around August 24).   The bloom should appear about August 28, about two days before the full moon.

The key question is how warm the Delta will be when it drains into the Bay.  This depends on air temperatures, river flows, and Delta outflow (the product of reservoir releases, Delta inflow, and water diversions).  With an expected general heat wave August 14-17, there is reason to be concerned that water draining from the Delta could be warm once again.

There have been several mitigating factors since the August 1 Super Moon.  Reservoir releases have increased slightly over the past month (Figure 2).  The strength of the spring and neap tides has decreased slightly following the August 1 full moon (Figure 2).  Higher Delta inflows (Freeport) have reduced Delta water temperatures slightly (Figure 3).

To minimize the strength of the potential bloom, warming, and fish die-off in the Bay, it is essential to keep Delta water temperatures down before the August 25-26 neap tide.  Several interdependent actions come to mind: (1) Increase lower Sacramento River flows over the next 10 days by several thousand cfs to get Wilkins Slough water temperatures down to about 68oF.  (2) Ensure that the extra Wilkins flow reaches the Delta at Freeport to keep Delta inflow up several thousand cfs.  (3) Increase Delta outflow during the August 22-24 spring tide by reducing south Delta exports, to minimize the build-up of warm water in the Delta prior to when the Delta drains to the Bay on the August 25-26 neap tide.

These actions will hopefully minimize the damage caused by Central Valley water management to the Bay ecosystem and specifically to the white sturgeon population during the next Super Moon cycle.

Satellite image

Figure 1. San Francisco Bay algae bloom on July 30, 2023. Source

Graphs showing Delta inflow (Freeport) and Delta outflow to Bay in week since the August 1 Super Moon.

Figure 2. Delta inflow (Freeport) and Delta outflow to Bay in week since the August 1 Super Moon. Note the spring tide has gotten slightly stronger and Delta inflows have increased (due to increased Folsom and Oroville reservoir releases)

Graph showing Delta inflow (tidally filtered and hourly) from the Sacramento River and water temperature at Freeport July-August 2023.

Figure 3. Delta inflow (tidally filtered and hourly) from the Sacramento River and water temperature at Freeport July-August 2023.

Graph showing Lower Sacramento River streamflow and water temperature at Wilkins Slough gage July-August 2023. Water temperature remains high (>20C, 68 F) under low streamflow.

Figure 4. Lower Sacramento River streamflow and water temperature at Wilkins Slough gage July-August 2023. Water temperature remains high (>20oC, 68oF) under low streamflow.

Sturgeon Moon August 2023

It is August 2023, and the month will feature two “Super Moons.” The first full moon is called a “Sturgeon Moon,” originally coined in reference to the ease of catching sturgeon in the Great Lakes during a full moon in summer.1 Its cycle began with the quarter moon and neap tide on July 24 until the full moon on August 1.2 This year’s Sturgeon Moon was regrettably prophetic in that it coincided with a new sturgeon die-off in San Francisco Bay in summer 2023.

Last summer, there was die-off of nearly a thousand adult white sturgeon in the greater San Francisco Bay due to a toxic algae bloom. More dead white sturgeon adults have been showing up on Bay beaches again this summer.3 After analyzing data related to the die-off, I now blame the white sturgeon die-off on the Sturgeon Moon (i.e., the tides) and some complicit factors.

Why are toxic algae blooms occurring, and sturgeon dying, again this year, in a wet flood year? Toxic blooms are not supposed to occur in wet years.

Based on the information available, this summer’s die-off event is occurring during a Sturgeon Moon. The Sturgeon Moon cycle (that occurred in late July and early August this year around the August 1 full moon) causes the Delta to rapidly fill from the Bay and stop flowing (termed a spring tide). In the recent heat, all that water in the Delta and lower rivers heated up to 75ºF. Then the Sturgeon Moon cycle drained (neap tide) the Delta into the Bay. When the top three feet or so of warm Delta water all drained into the Bay, it triggered the toxic algae bloom, low oxygen, and hot water. In combination, these factors are killing the fish.

Sturgeon likely suffered their initial stress from the warm lower rivers where they spawned in May. By the time of the Sturgeon Moon, many had moved downstream into the Delta toward the cooler Bay. The emptying of the warm Delta into the Bay during the neap tide likely stimulated further movement into the Bay. Once in the Bay, the stressed sturgeon received added stress from the warm Bay and its new toxic algae bloom and hypoxia conditions. The accumulated stress from the whole series of events likely caused the die-offs observed in the past two summers.

Yes, the Sturgeon Moon, Bay pollution, and algae seeds from last years bloom played a part, but the biggest culprits were state and federal water managers, who allowed the rivers and Delta to heat up in early summer by making high water deliveries upstream of the Delta and exporting high volumes of water from the Delta.

I worry about the accuracy of the loss estimates of adult white sturgeon in the Bay. As noted in the Chronicle article cited and linked above, there may be many dead sturgeon that have gone undetected at the bottom of the Bay. Last year, as many as 1000 sturgeon were found dead. There are probably less than 10,000 adult white sturgeon left in the Bay-Delta spawning population. Sport fishermen generally harvest about a thousand each year. The California Department of Fish and Wildlife and the California Fish and Game Commission are revisiting fishing regulations this fall and may close or restrict the popular sport fishery. 4

Could these circumstances have been avoided? Yes. First by maintaining lower Sacramento River and Delta inflow temperatures (Figure 1) at or below the state water quality standard of 68ºF (20ºC) with adequate flows (greater dam releases and/or less water deliveries). The lower Sacramento River flow of 5000 cfs is far too low for early summer, especially in a wet year. Second, by maintaining Delta temperatures at least in the 20-22ºC range (there is no Delta water temperature standard) with adequate cool inflows. Third, by maintaining water temperatures in Bay below 20ºC with adequate cool Delta outflow during the spring tides. This solution would have been difficult to achieve in drought year 2022, but not in flood year 2023.

Water project managers should have foreseen the tidal patterns coming in the summer (Figure 2) and the inadequacy of the estimated flows they were providing to the Delta (Figure 3). Measured Delta outflow by USGS was actually lower than the DWR model predictions (Figure 4). Instead, water managers provided approximately 20,000 cfs of water deliveries, including near-maximum export pumping from the Delta (Figure 5). The upstream pull to the south Delta export pumps reached a peak near 10,000 cfs in interior Delta channels at the end of July (Figure 6).

The influx of warm water reached a peak at the maximum ebb tide on July 24. This can be seen in Figure 7 at the Carquinez Bridge gage, and Figure 8 in Suisun Bay. Evidence of the Bay bloom can be seen in Figure 9, as the North Bay water returned to the East Bay with its algae (chlorophyll) concentrations and low dissolved oxygen at the end of July, coinciding with the return of the spring tide. Further evidence of the bloom is indicated in Figure 10 in the low nitrogen concentrations at the end of July in Suisun Bay.

In summary, the recent reappearance of a die-off of white sturgeon in the Bay appears to have been triggered by the strong tides of the summer Sturgeon Moon draining warm water from the Delta into the Bay. The warm water, in turn, was the result of excessive water diversions upstream of the Delta and near-maximum water exports from the Delta, combined with tidal dynamics.

Graph showing flow and water temperature in the lower Sacramento River upstream of the Delta at Wilkins Slough (WLK) and at the entrance to the tidal Delta at Freeport (FPT). Red line is water quality standard for lower Sacramento River.

Figure 1. Flow and water temperature in the lower Sacramento River upstream of the Delta at Wilkins Slough (WLK) and at the entrance to the tidal Delta at Freeport (FPT). Red line is water quality standard for lower Sacramento River.

Graph showing Average daily flow and hourly stage at Rio Vista in North Delta near exit to the Bay.

Figure 2. Average daily flow and hourly stage at Rio Vista in North Delta near exit to the Bay. Note the sharp flow increase and the drop in stage on 7/24 (Delta draining under the neap tide of the initial quarter of the Sturgeon Moon.)

Graph showing Stable Delta conditions in July 2023. Inflows = (American River AFO + Lower Sacramento River at Wilkins Slough WLK + lower Feather River at Gridley GRL + lower San Joaquin river at Mossdale MSD. Outflow (DWR-DTO) = Inflow – exports. Note relatively stable conditions.

Figure 3. Stable Delta conditions in July 2023. Inflows = (American River AFO + Lower Sacramento River at Wilkins Slough WLK + lower Feather River at Gridley GRL + lower San Joaquin river at Mossdale MSD. Outflow (DWR-DTO) = Inflow – exports. Note relatively stable conditions. Note DWR outflow is calculated (not measured) from daily flows.

Graph showing Delta outflow as estimated by USGS from flow gages.

Figure 4. Delta outflow as estimated by USGS from flow gages. Note drop in Delta outflow (at the peaks in spring tides) beginning on 7/24 as shown in Figure 2, but not in Figure 3. Also note the peak outflows were higher in USGS outflows.

Graph showing South Delta SWP and CVP exports June-July 2023.

Figure 5. South Delta SWP and CVP exports June-July 2023. Note 20,000 acre-ft per day is approximately hourly average of 10,000 cfs. Maximum export rate is 11,400 cfs (approximately 23,000 acre-ft per day).

Graph showing Old and Middle River flows toward export pumps in south Delta.

Figure 6. Old and Middle River flows toward export pumps in south Delta.

Graph showing Salinity (EC), water temperature (C), and turbidity at Crockett in north Bay in June-July 2023.

Figure 7. Salinity (EC), water temperature (C), and turbidity at Crockett in north Bay in June-July 2023. Note neap tide and lower salinity, warm, clear water on 7/24-25.

Graph showing Salinity (EC), water temperature (C), and turbidity at Port Chicago in east Bay in June-July 2023.

Figure 8. Salinity (EC), water temperature (C), and turbidity at Port Chicago in east Bay in June-July 2023. Note neap tide and lower salinity and warmer water on 7/22-25.

Graph showing Salinity (EC), dissolved oxygen, and chlorophyll concentration in east Bay in June-July 2023.

Figure 9. Salinity (EC), dissolved oxygen, and chlorophyll concentration in east Bay in June-July 2023. Note bloom, higher salinity, low dissolved oxygen beginning on 7/25.

Graph showing Salinity (EC), water temperature (C), and total nitrogen at Pittsburg in east Bay in June-July 2023.

Figure 10. Salinity (EC), water temperature (C), and total nitrogen at Pittsburg in east Bay in June-July 2023. Note higher salinity and water temperature, and reduced nitrogen (from algae uptake) beginning on 7/24-25.

  1. Two supermoons will light up the night sky in August. Here’s what you need to know https://www.sfchronicle.com/bayarea/article/supermoons-two-blue-sturgeon-18270736.php
  2. Spring tides always happen when the Moon is at the full or new phase, which is when the Sun, Moon and Earth are in alignment. Neap tides occur around the first and last quarter phase of the Moon, when the Moon’s orbit around Earth brings it perpendicular to the Sun.
  3. https://www.sfchronicle.com/climate/article/fishkill-18279379.php
  4. https://ncgasa.org/2023/04/17/white-sturgeon-meeting-and-overview-from-cdfw/