Where have all the salmon gone?

Based on early indicators, it appears that salmon populations in the Central Valley are in critical condition. First, there was poor smolt production from the 2014 and 2015 drought-year salmon runs in the Central Valley. That led to last fall’s (2017) runs being so poor that Coleman Hatchery had to get eggs from state hatcheries on the Feather and American rivers to meet its needs.1 CDFW believes poor ocean conditions have led to low adult salmon numbers for 2018 fisheries and runs. The weak runs may eliminate 2018 salmon fisheries. 2

The evidence based on initial surveys is that brood year 2017 salmon (born last summer and fall) fry-smolt production was extremely poor. First, lower Sacramento River screw trap catches are low in early 2018 compared to 2017 (Figures 1 and 2). Winter screw trap catch-per-trap-day (and Sacramento trawl catch not shown) in the lower Sacramento River in 2018 are only 2% of 2017. Note flows and turbidities were very low in 2018 compared to 2017. I warned that these conditions with warmer water would lead to slower migration rates, starvation, and high predation by stripers. Second, salmon salvage at the south Delta pumping plants has been extremely low in 2018 (Figure 3) compared to 2017 (Figure 4). Salvage is a strong indicator of relative abundance. Third, compared to historical levels (Figure 5), salvage numbers in 2018 are two orders of magnitude lower than in 1999 when salmon runs were last strong.

You can blame the problem on the 2012-2016 drought, poor ocean conditions, or poor river-Delta flow management as I do. Whatever the cause, strong measures are needed to recover the salmon populations. Without strong measures, future brood year production will be so low there will be few salmon and no salmon fishing.

Figure 1. Knights Landing screw trap catch Aug 2017 to Mar 2018.

Figure 2. Knights Landing screw trap catch Aug 2016 to Aug 2017.

Figure 3. Chinook salmon salvage at CVP fish facilities in south Delta Nov 2016 to March 2018, along with export rate at Jones Plant. Note very small, nearly unperceivable numbers in winter 2018.

Figure 4. Chinook salmon salvage at SWP fish facilities in south Delta Nov 2016 to March 2018, along with export rate at Clifton Court. Note very small, nearly unperceivable numbers in winter 2018.

Figure 5. Chinook salmon salvage at CVP and SWP fish facilities in south Delta Jan 1999 to June 1999, along with export rate at south Delta pumping plants.

Delta Zooplankton

One never hears much about Delta zooplankton, the food of most of the pelagic fish including smelt, and also the food of shad, young striped bass, and even young salmon. Zooplankton are the heart of the Delta foodweb. For decades, surveys by CDFW and others have noted that zooplankton suffer in droughts, as do fish that feed upon them. I (and many others) have always believed that zooplankton were one of the key factors in Delta pelagic fish declines. Many science papers suggest shifts in species composition over decades and declining densities after clam invasions as being key factors in long term trends in zooplankton. Rarely are freshwater inflow/outflow or Delta exports offered as key factors in zooplankton trends.

The multi-decade Bay-Delta zooplankton survey database is large and complex, making analyses difficult and time-consuming. There are no indices to follow abundance patterns as there are for fish.

In this post, I provide some insights using a few specific comparisons of zooplankton densities between 2015, a drought year, and 2017, a wet year. I focus on spring and early summer, when zooplankton are perhaps at their greatest importance as fish food and when the difference between year-types is usually greatest.

Some example comparisons are presented in charts below. Figure 1 depicts the difference in May between 2015, a critically dry year, and 2017, a wet year, for Cladocera (commonly referred to as water fleas), a predominantly freshwater zooplankton and important pelagic fish prey. Figure 2 depicts differences between June 2015 and 2017 densities of Pseudodiaptomus, a key young smelt food. Figure 3 depicts differences for total copepod nauplii in July. In each figure, the location of the low salinity zone is referenced by the X2 factor.

My interpretation of all this is that zooplankton abundance and thus pelagic fish production are controlled by (1) flows through the Delta, (2) the location of the low salinity zone, and (3) south Delta exports. A much greater proportion of these key zooplankton populations are highly vulnerable to south Delta exports in drier years with low flows. Furthermore, the proposed WaterFix would exacerbate these conditions and contribute further to the decline of Bay-Delta fish, primarily by reducing spring flows in the northern Delta channels and shifting the low salinity zone eastward. WaterFix would be less ofa factor in summer as south Delta exports are likely to predominate.

Figure 1. Comparison of Cladoceran densities in May plankton surveys in 2015 and 2017, critical dry year and wet years, respectively. Red line denotes X2 (~3800 EC) in center of low salinity zone. Note that cladocera distributed further downstream in wetter 2017.

Figure 2. Comparison of Pseudodiaptomus copepodid densities in June plankton surveys in 2015 and 2017, critical dry year and wet years, respectively. Red line denotes X2 (~3800 EC) in center of low salinity zone. Note higher densities and distribution further downstream in wetter 2017.

Figure 3. Comparison of copepod nauplii densities in July plankton surveys in 2015 and 2017, critical dry year and wet years, respectively. Red line denotes X2 (~3800 EC) in center of low salinity zone. Note higher densities and distribution further downstream in wetter 2017.

Winter-Run Chinook Salmon – What Really Caused Their Decline

The winter-run Chinook salmon population crashed around 1980 and has not recovered (Figure 1). The population started coming back from 2001-2006 but fell to 827 in 2011. It remained in the 1500 to 6000 range from 2012-20161 with the help of the Livingston Stone federal hatchery near Redding. Hatchery fish make up an increasing proportion of the population each year.

In a 2011 review, NMFS attributed the general population decline to “blockage of access to historic habitat, other passage impediments, unscreened water diversions, heavy metal pollution from mine runoff, disposal of contaminated dredge sediments in San Francisco Bay, ocean harvest, predation, drought effects, juvenile losses at the CVP and SWP Delta pumping facilities; and elevated water temperatures in spawning grounds.”  Droughts and the loss of cold water pool in Shasta are generally considered the primary cause of the decline over the past four decades starting with the 1976-1977 drought.  The decline continues despite “reduced harvest impacts, Iron Mountain Mine clean up, screening of water diversions, altered CVP water operations that improve passage and reduce predation, and construction of a temperature control device on Shasta Dam”. 

A range of actions is being implemented to help recover this NMFS-designated “Species in the Spotlight.”  The problem is the actions do not include the one key factor that was a major cause of the original decline and the primary cause of the lack of recovery:  high late-fall and early-winter Delta exports cause high juvenile salmon mortality in the Delta.

The problem starts from the fact that winter-run juveniles leave the upper Sacramento River rearing area for the Bay-Delta and eventually the ocean with the first fall or early winter rains that produce flow pulses from undammed Sacramento River tributaries.  These same untamed flows are also a primary target of the state and federal export facilities in filling south-of-Delta storage depleted from the summer.  Delta exports have few restrictions in fall.  The allowed export-to-inflow ratio is 65% (compared to 35% in winter-spring).  There are no OMR limits.  Interior Delta flows caused by high exports reach -10,000 cfs, compared to -5000 cfs in winter-spring.  The Delta Cross Channel is usually open through the fall and closed in winter, allowing salmon to move from the Sacramento River to the interior Delta more easily in fall.  Higher fall exports are also a consequence of increasing winter-spring protections (in water quality control plans and endangered fish biological opinions) for fish that led to reduced exports in those seasons.  Fundamentally, higher fall exports were a result of the state export facilities coming on line in the mid-1970s, which increased the export capacity from 4,400 cfs to 15,000 cfs.

One need only look at the increase in fall export rates and juvenile salmon salvage in the south Delta to see the association with the decline of winter-run.  Figure 2 shows CVP exports in 1984-1985 compared with the historical average.  Figures 3 and 4 show fall exports in the example years.  Figure 5 shows fall 2016 exports and Delta inflow, which is compelling proof that the problem continues.2  Figure 6 shows high negative Old and Middle River (OMR) flows caused by high exports.  Figure 7 shows December Chinook salmon salvage at south Delta fish facilities.  Further evidence of the association between fall exports and the decline of winter-run is available in the long-term fish salvage data that dates back to the 1970s historical period depicted in Figure 1.  Further discussion on the risk of high fall and early winter risks to salmon from exports is presented in http://calsport.org/fisheriesblog/?p=1949 .

Figure 1. Trend in winter-run salmon escapement to the Sacramento River below Shasta Reservoir 1970-2009 in thousands of adult salmon. Source

Figure 2. Tracy (federal) export rate in 1984-1986, with mean daily export rate 58-year average. Note marked increase in Nov-Dec period over historical average.

Figure 3. Federal and state export rates in fall 1984.

Figure 4. Federal and state export rates in fall 1985.

Figure 5. Delta export and inflow rates in fall 2016.

Figure 6. OMR December 2016.

Figure 7. Chinook salvage fall 2016.

  1.  https://nrm.dfg.ca.gov/FileHandler.ashx?DocumentID=84381
  2. Exports were greater than 10,000 cfs from 11/19/17 to 12/8/17.

A “Winter-Run Critical Habitat Conundrum”

Figure 1. Lower American River floodplain referenced in recent science paper as non-natal rearing habitat of endangered winter-run Chinook salmon. Note the many borrow pits from Paradise Beach downstream to Discovery Park, remnants of a historical levee-building era.

Conundrum: A confusing and difficult problem.

The consulting firm FishBio reported in a February 12, 2018 blog post: “Just when you think you’ve got a species figured out, sometimes they show up where they’re “not supposed to be” and make you reconsider. This recently happened in the fish world, when adult winter-run Chinook salmon, an endangered fish previously thought to only inhabit the mainstem Sacramento River downstream of Keswick Dam, were found to have actually reared in multiple Sacramento River tributaries as juveniles.” The study referenced by FishBio found that roughly half of the returning adult winter-run had reared as juveniles for a several weeks or more in habitats other than the mainstem Sacramento River. It has long been known that winter-run had used these habitats1, but the proportion of the population that had done so was not known. The recent study has helped answer that question. Such a life-history pattern is obviously important, as proven by this study.

Juvenile winter-run salmon have frequently been detected in winter in habitats along the Sacramento River from Redding to Rio Vista in habitats where they are not commonly expected to be. In wet years, winter-run are carried into the Butte-Sutter and Yolo bypasses (and other Sacramento River floodplain areas like the lower American River) where they rear as noted in the recent study. I personally have collected large numbers of winter-run juveniles in the 1990’s in Butte Basin, the Bypasses, and the lower American River floodplain (Figure 1). In many cases, floods had carried or backed-up water along with winter-run juveniles into these areas. I have also collected winter-run juveniles (and other juvenile fall/spring salmon) in Suisun Bay, downstream of the Delta. A 2013 report by biologist Michael Healey of the California Department of Fish and Wildlife found that winter-run migrate up Auburn Ravine in Sutter County to rear.2

“These newly identified areas, called “non-natal habitats” because they differ from where the fish was born, can be divided into four distinct groups, including the Mount Lassen tributaries (Mill, Deer, and Battle creeks), the Sacramento-San Joaquin Delta and Feather River, the American River, and a final group rearing in an uncertain location that is not in the Sacramento River.” Again, these are not “newly” identified. Non-natal refers to rearing in adjacent river systems where fish were not born. These habitats are part of the lower Sacramento River floodplain and other accessible habitat of winter-run.

“So even though we might think winter-run are “not supposed to be” using these tributaries, the fish are actually spreading the risk of extinction across multiple habitats to safeguard their future.” These are the natural floodplain and tributary rearing habitats of winter-run. The problem is that there is not enough of these habitats left, and those that are left are often too ephemeral or are in poor condition. In many cases, the young salmon are gain access to floodplains but are later blocked from exiting, only to eventually die and not contribute to the population. Juveniles that enter the lower reaches of tributaries of the Sacramento River are sometimes cut off by seasonal dams or stranded in fields by unscreened irrigation diversions. Often, non-natal habitats (e.g., dredger ponds and borrow pits) are also winter refuges and permanent habitat for predatory warm water fish.

Yes, these non-natal rearing habitats should be recognized, protected, restored, fixed, enhanced, and created where possible to help save the winter-run salmon population. In the meantime, such habitats will continue to support winter-run as they have in the past. There is no “conundrum”.

  1. P.E. Maslin, W.R. McKinney, T.L. Moore. 1996. Intermittent streams as rearing habitat for Sacramento river Chinook salmon. Anadromous Fish Restoration Program, Stockton, CA, United States Fish and Wildlife Service (1996), pp. 1-29
  2. https://plummerj.files.wordpress.com/2015/01/healey-cdfw-2013-auburn-ravine-rotary-screw-trap-monitoring-report-rs.pdf