Water year 2021 is a bad year for American River wild salmon and steelhead production.

Water year 2021 has been bad for American River salmon and steelhead, with very low Folsom Reservoir releases Oct-Jan (Figure 1a).  Water year 2021 can best be described as a dry year, at least through the first quarter, somewhat on the drier side of 2018 and 2020, which were below normal water years.  However, whereas 2018 and 2020 followed wet years, water year 2021 follows a drier year.  This means 2021 started with poorer Folsom Reservoir storage (Figure 1b).

Water year 2021’s low fall and early winter reservoir releases from Folsom were nearer to 1000 cfs than the normal 2000 cfs.  As a result, much of the good spawning and early rearing fry habitat in the river below the dams remained dry (Figure 2).  In contrast, even in drought year 2014, the side channel spawning habitat remained slightly watered at 600 cfs river flow (Figure 3).  So, not only are redds dewatering in early winter of these dry years, the dewatering or drying of the side channels is getting worse.  This is either because the main channel is incising from persistent scouring or because sediment deposition blocks the entrance to the side channels, leaving perched side channels high and dry.

What got us into this predicament?  Was it simply Mother Nature or global warming?  Water management should take part of the blame (Figures 4 and 5).  The end-of-September Folsom storage in 2019 was higher than average at 700 TAF after a wet year.  Flood control rules required reservoir levels to be down to 600 TAF in November.  But storage dropped to 500 TAF, with higher-than-normal fall releases (Figure 6), essentially shorting the reservoir 100 TAF in the new 2020 water year.

The American River Water Forum Agreement Is designed to manage and protect all water users, including salmon.  Its formula for reservoir releases is based on natural flow input levels to the reservoir for that water year, which was lower than normal in 2020, thus leading to the prescribed low fall 2020 reservoir releases.  With reduced storage and low reservoir inflow in 2020, it was impractical to release the needed 2000 cfs for salmon and steelhead in fall 2020 without dropping the reservoir down to 200 TAF in what could be a drought year.

In conclusion, the American River salmon and steelhead are at the mercy of a precarious water management system that can go from good to bad in one water year.  One answer to this low fall flow problem is to ensure there is an extra 50-100 TAF of reservoir storage at the end of September to maintain the needed higher fall and winter flows for salmon and steelhead.  Because the channel morphology also continues to change, sediment supply and river morphology must also be taken into account, if not also adjusted.

Figure 1. Oct-Jan Folsom Reservoir releases 2017-2021 with long term average (above) and reservoir storage (below).

Figure 2. Sunrise side channel (looking upstream) end of January 2021 with some of the best spawning and rearing habitat for salmon and steelhead in the lower American River nearly dry with river flows at 1000 cfs. Other important side and main channel spawning and rearing habitats were similarly compromised. Note main channel is at extreme left middle of photo.

Figure 3. Sunrise side channel (looking downstream) on January 15, 2014. Some of the best spawning and rearing habitat for salmon and steelhead in the lower American River is in this side channel. In 2014 as shown, it was almost dry with river flows at 600 cfs. Note tops of salmon redds sticking out of the water in various stages of dewatering. The redds were dug by salmon earlier in fall 2013 at 1200 cfs.

Figure 4. Folsom Reservoir storage (acre-ft) in fall 2017-2020. Water years 2017 and 2019 were wet years, and water years 2018 and 2020 were below normal years.

Figure 5. Folsom Reservoir releases (cfs) in fall 2017-2020. Water years 2017 and 2019 were wet years, and water years 2018 and 2020 were below normal years.

Figure 6. Folsom Reservoir release (cfs) in fall 2019 with 64-year average.

Central Valley Steelhead 2021

The Delta Science Program plans to host a Steelhead Workshop on February 17 – 19, 2021.  The purpose of the workshop is to “identify challenges to managing and monitoring Central Valley steelhead with the goal of identifying collaborations that are needed to improve the monitoring and science network for the species in the San Joaquin basin.”  While commendable and needed, such a workshop could and should cover the entire Central Valley Evolutionary Significant Unit (ESU), all of which must pass through the Delta on the way to and from the Pacific Ocean.

Although Central Valley steelhead science and management can succinctly be described as a mess, there are a few basic facts and misconceptions worthy of note that are useful in considering steelhead management in the Central Valley.

First, the facts:

  1. Steelhead are rainbow trout that have the genetic inclination to spend some of their life cycle in the ocean. Most rainbow trout have such an inclination, but some populations have long ago given up on that inclination (g., redband rainbow trout).

  2. In the Central Valley, all rainbow trout residing in anadromous waters are considered steelhead and are thus protected unless their adipose fins are clipped, which definitively shows hatchery origin.

  3. Rainbow trout of a wide range of origin, stocked or wild, live in or above dams in the Valley and are not designated steelhead. Some are remnants of steelhead trapped behind dams.  Other were hatchery raised or perhaps are remnants of long-ago geologically isolated populations.  Many of these non-steelhead pass over or through the dams and mix with steelhead, essentially becoming steelhead and influencing steelhead population genetics.

  4. All steelhead populations in the Valley have some degree of domestication from more than 100 years of hatchery influence and manipulation. Hatcheries (federal, state, and private) continue to influence population genetics.  Valley hatcheries have brought in eggs from many sources (g., Columbia River, coastal stocks, interior stocks such as Kamloops rainbow trout).  Hatcheries manipulated many important natural traits through selective breeding (e.g., run timing, age of maturity, growth rate).  Such changes affected the genetic integrity of locally adapted populations, adapted traits gained over thousands of generations.  Some hatchery sources were selected for traits better suited for hatchery managers or anglers than for natural diversity and population endurance.

  5. Valley steelhead come in many different breeds and colors, with distinct characteristics, traits, behaviors, and appearance. The basic breeds are often described by run timing:  winter, spring, summer, and fall, although most spawn in winter or spring.  Some examples are shown in attached figures below.

  6. Natural selection continues to adjust to human influences, albeit in competition with hatchery domestication.

Some misconceptions:

  1. Hatcheries are managed for benefit of natural, wild, or native steelhead populations. No. Hatcheries are managed to meet mitigation smolt production quotas at minimal cost, with some consideration for angler preferences (e.g., trophy size).  Hatchery domestication effects on genetic integrity are severe and not lessening.

  2. Central Valley steelhead are not in danger of extinction. Wrong.  They are in danger, which is why they are state and federally listed, and why no wild (unmarked) rainbow trout can be harvested in the anadromous zone of the Central Valley.  Wild “native stocks” are rare and declining.

  3. Spawning and rearing habitat in rivers and dam tailwaters are maintained to protect wild steelhead.   Protective standards are inadequate or often unmet.  Natural spawning and rearing habitats are degraded and are further deteriorating or being lost.  Flows are too low, and water temperatures too high.

  4. Steelhead are compatible with introduced non-native sportfish. No.  Striped bass, black bass, catfish, sunfish, and American shad all prey upon steelhead – the total population effect is substantial.  Since predatory fish cannot be eradicated, the interaction between steelhead and predators needs to be managed.

  5. Climate change is the cause of declining natural populations. Though climate change is real and exacerbates harmful conditions for steelhead, blaming climate change for the decline of steelhead is just a convenient excuse.

Management needs:

  1. Improved monitoring of steelhead population dynamics is needed. Despite the angler-funded steelhead stamp program, there is minimal monitoring of adult spawners or juvenile  Screw traps are for migrating fry, but steelhead fry don’t migrate like salmon.

  2. River habitats should be restored and improved. Rivers should not be treated just as conduits from hatcheries to the ocean.  Steelhead over-summer at least one year before emigrating to the ocean.

  3. Mitigation hatcheries should be converted to conservation hatcheries. The hatchery programs need a cleansing.  Also, hatchery rainbows released above dams should be marked.

  4. Spawning habitat should be for wild, native steelhead. Steelhead sanctuaries are needed.  Every effort should be made (selective barriers) to limit access to these areas by hatchery or stray steelhead, and by migratory non-native predators and competitors such as shad and stripers.

  5. Flows are needed to increase survival of wild steelhead fry and smolts. Steelhead are genetically adapted to emigrate with the natural flow pulses of fall, winter, and spring.  Reservoirs have eliminated or reduced such flows.  Without the flows, smolts won’t migrate or survive the predator gauntlet.  Trap and hauling wild smolts around the lower river and Delta predator gauntlet is an option for dry years.

  6. Flows are needed to improve attraction of adult migrants to spawning rivers. Again, steelhead need the flow pulses.

For more on steelhead see:

Native rainbow-steelhead from the lower Yuba River. Many wild rainbow trout do not migrate, choosing to remain in the cold tailwaters of dams, where they sustain high-quality sport fisheries.

An early fall run hatchery steelhead from the lower American River in October. Battle Creek hatchery steelhead smolts were stocked in the American River for one year to determine if they would be a viable more-native alternative to the American hatchery’s coastal Eel River origin stock. They were fine sport, susceptible to dry flies.

The American River hatchery program uses coastal origin stock that spawn in winter. Many spawners enter the river in late fall when fishing is closed to protect spawning salmon. Fishing is open in winter spawning season. This female caught in January was likely actively spawning. Native steelhead are spring spawners.

Hatchery Steelhead Smolts Released Just in time to Chow Down on Baby Salmon

The state and federal hatcheries in the Central Valley will be releasing 1.5 million yearling steelhead smolts this winter. The location and timing of these releases could not be worse for the survival of newly emerged wild fall-run and spring-run salmon.

The U.S. Fish and Wildlife Service released approximately 600,000 smolts from the Coleman Hatchery on Battle Creek into the Sacramento River near Redding in January. The California Department of Fish and Wildlife will release approximately 900,000 steelhead smolts from state hatcheries to the lower American, Feather, and Mokelumne Rivers in February. The peak of newly emerged salmon fry is January in the Sacramento River near Redding and February in the three tributary rivers (the difference is a result of managed fall water temperatures).

In prior posts,1 I warned of releasing yearling hatchery smolts on top of wild salmon fry (see photo below). The solution is to simply stop doing this. The fish agencies should release the mitigation hatchery smolts earlier or later in the year, or truck them to the Delta or Bay as they did in the past. In general, the agencies should also release steelhead smolts during high flows, when juvenile salmon have a greater chance to evade the steelhead, and when both steelhead and salmon are likely to move more quickly downstream.

In the longer term, the California Department of Fish and Wildlife and the U.S. Fish and Wildlife Service should redirect their steelhead hatchery programs toward recovery of the native steelhead stocks by converting their efforts to conservation hatchery programs. Many of the native steelhead traits are less intrusive on the salmon (e. g., fall and spring migrations, spring spawning). The fish agencies should also stop using stocks whose origin is out-of-basin (American River).

Photo: yearling hatchery steelhead smolt fed on wild salmon fry in American River in February. (Photo by author)

 

 

 

Sustaining wild Salmon and Steelhead above Central Valley dams

The Case for Two-Way Trap and Haul

Why should we expand spawning populations of listed salmon and steelhead to areas above dams and impassible falls in the Central Valley? The answer is: because the genetic makeup and wild traits of populations upstream of existing barriers can be controlled, restored, and preserved.

At present, the genetic makeup of salmon and steelhead populations below dams is continually being compromised by hatchery fish and strays to and from other watersheds. The one population of winter-run Chinook is confined to the spawning reach immediately below Keswick Dam and thus is subject to the potentially drastic whims of nature and man. That population is further being compromised by the increasing threat of hatchery degradation of the gene pool as winter-run hatchery fish further dominate the adult spawning population. Small, self-sustaining populations of spring-run Chinook and steelhead remain in only a few watersheds. They too are continually being threatened by strays and hatchery fish.1

One solution to maintaining genetic integrity by limiting genetic influence from hatchery-produced fish and interbreeding of genetically or behaviorally distinct runs is to implement trap-and-haul programs in isolated reaches above dams.

The National Marine Fisheries Service included requirements to establish winter-run Chinook trap-and-haul populations above Shasta Reservoir in 2009, 2010, and 2014 biological opinions on Central Valley Project (CVP) and State Water Project (SWP) operations. CALFED proposed introducing spring-run Chinook above Yuba River dams. Extensive studies have been conducted on reintroducing salmon in these areas. The requirement to establish populations upstream of Shasta has been dropped in the Trump administration’s October 2019 biological opinion for the CVP and SWP. For the moment at least, the requirement remains in state of California plans.2

The California Department of Fish and Wildlife’s California Endangered Species Act Take Permits for CVP and SWP operations should require reintroduction of salmon and steelhead upstream of an array of dams in the Sacramento River watershed. All of the sites I recommend are affected by the CVP and SWP. The state should also consider locations in the San Joaquin and Klamath River watersheds. The Klamath watershed is also affected by Reclamation’s Klamath Project, and is the present subject of the country’s largest dam removal project.

In considering potential sites I focused on the ability to maintain experimental controlled conditions as well as optimum habitat quality sites. In most cases, that meant minimal flow variation and high quality, cold reaches dominated by spring water. The sites need not be in the historical range, but should be in historically occupied watersheds (e.g., they could be upstream of impassible falls in watersheds that historically held salmon and steelhead.).

I suggest five sites in the Sacramento River watershed (Figure 1).

  1. Upper Sacramento River (above Lake Shasta) – below Lake Siskiyou dam upstream of Dunsmuir in the Box Canyon/Shasta Springs reach.
  2. Upper McCloud River (above Upper McCloud Falls) – spring-fed reach above Larkin Dam on south flank of Mt Shasta.
  3. Upper Battle Creek – Ripley Creek, tributary of South Fork, spring-fed, although presently its flow is diverted by PG&E to South Fork Powerhouse.
  4. Upper North Fork of Feather River – above or below Lake Almanor.
  5. Upper North Yuba River – above Bullards Bar Reservoir.

I have studied all of these sites and consider them feasible for reintroduction. Most have been considered for reintroduction by state and federal resource agencies. Reintroduction strategies may include releases of native-strain adult spawners, planting of eyed eggs, fry, or fingerlings, then capture and trucking to locations downstream of dams.

For more on reintroducing salmon above dams see:
https://podcast.barbless.co/reintroduction-of-winter-run-chinook-into-the-mccloud-river-jon-ambrose-noaa-nmfs/

https://www.webpages.uidaho.edu/UIFERL/pdf%20reports/Keefer%20et%20al.%20%202010%20WIL%20Chinook%20prespawn%20mortality%201.pdf

https://fishwithjd.com/2015/05/07/new-plan-developing-to-get-spring-chinook-into-north-yuba-upstream-of-bullards-bar-reservoir/

Figure 1. Historical range and present range of salmon in Sacramento-San Joaquin watershed, with suggested five locations for reintroduction via two-way-trap-and-haul shown as red dots.

The Good, the Bad, and the Ugly in the New Non-Jeopardy Biological Opinions for CVP/SWP

The Endangered Species Act (ESA) directs all federal agencies to work to conserve endangered and threatened species and to use their authorities to further the purposes of the Act. The purpose of the Act is to protect and recover imperiled species and the ecosystems upon which they depend. Protect means to not allow “take” of listed species. If some take occurs despite best efforts, then “reasonable and prudent” alternatives (RPAs) may be needed to protect the threatened or endangered species.

The US Bureau of Reclamation and its partner the California Department of Water Resources (permittees) operate the federal Central Valley Project (CVP) and the State Water Project (SWP) under federal and state ESA “take” permits issued in 2008-2009 biological opinions that included RPAs. The RPAs constrained water supply deliveries and other project operations during the past decade to protect listed salmon, smelt, sturgeon, and steelhead.

Over the past decade, the parties have reinitiated consultation to revise take permits and RPAs. The initial motivation for reinitiation was that RPAs and take limits were not protecting or recovering the listed species. The US Fish and Wildlife Service (USFWS) and the National Marine Fisheries Service (NMFS) recognized that more stringent measures were needed. A series of draft opinions were developed with further protections, culminating with a July 1, 2019 draft jeopardy opinion from NMFS on Reclamation’s proposed action as of that time. A jeopardy opinion occurs when an action is reasonably expected, directly or indirectly, to diminish a species’ numbers, reproduction, or distribution so that the likelihood of survival and recovery in the wild is appreciably reduced.

Reclamation updated its “proposed action” in response to the draft jeopardy opinion. “It must also be acknowledged that the current status of all these species continues to be imperiled, and that one of the objectives of the proposed action is to maximize the available supply of water for irrigation, municipal, and industrial deliveries.”1 Reclamation doubled down. Reclamation’s most recent proposed action includes some provisions of the 2008/2009 biological opinions’ RPAs and recent jeopardy draft BO. In response, the Services relented under pressure from the Trump administration, replaced technical staff with a new group of managers, and recently issued final non-jeopardy opinions.

The new proposed action from Reclamation can now go into effect without RPAs that would hinder Reclamation from maximizing water deliveries. The new Biological Opinions will govern project operations under a wide array of vague commitments to protect and recover listed species: some good, some bad, and some simply ugly.2

The Good (Well, as Good as it Gets)

  1. Delta Smelt Conservation Hatchery
    This is long past due. However, the proposal is vague and limited in potential scope and funding commitment.
  2. New Habitat
    Most measures that require new habitat in the new BO were prescribed in past BOs. Now there are new vague commitments. Some listed species (e.g., Delta smelt) have populations too small to benefit from new habitat.
  3. Hatchery Management
    New and updated old prescriptions, though vague, are badly needed, especially for converting the program focus from mitigation hatcheries to conservation hatcheries.
  4. Proposed Funding for research and restoration
    The BOs contain an estimated total of $1.5 billion dollars in proposed funding to support threatened and endangered fish survival and recovery through research and restoration actions. However, the proposed funding is not dedicated and is vague, particularly in that much of the effort and funding may go to prior commitments that have not been funded.
  5. Delta Cross Channel Improvements
    Proposed upgrades to the Delta Cross Channel Gates are helpful but vague. The Delta Cross Channel should be screened, as should nearby Georgiana Slough.
  6. Modifying the Head of Old River Scour Hole
    This action is OK but addresses only one of many predation hotspots for salmon and steelhead caused by human actions and man-made structures in lower San Joaquin River.
  7. Fish Passage on Deer Creek (a non-Project watershed)
    This is one positive action for listed spring-run salmon among many in NMFS’s Central Valley Salmon Recovery Plan. All of the actions in the Recovery Plan should be included and funded. Deer Creek, a tributary to the lower Sacramento River, has a spawning run of wild spring-run salmon. Deer Creek does not have a project dam on it, but Deer Creek salmon pass through the lower Sacramento River and Delta. Deer Creek salmon and all other salmon-bearing tributary populations are thus affected by project operations.
  8. Adult Straying Barrier on the Knights Landing Outfall Gate (a flood and drainage system)
    This was constructed under prior commitments but failed.
  9. A “drought toolbox” to prioritize a proactive approach to drought planning, including early coordination with senior water right users
    Proactive coordination is fine and good, but the BOs contain no commitment to reduce diversions by senior Settlement and Exchange contractors or any others during droughts.
  10. Support for NMFS Steelhead Monitoring and Collaboration Activities with Non- Project Tributaries
    Monitoring may inform mitigation. However, monitoring in itself is not mitigation. All recovery plan actions should be supported because CVP/SWP operations and facilities have had major adverse effects on all Central Valley steelhead populations.
  11. $14 million commitment to expedited implementation of the Battle Creek Restoration Project including reintroduction of winter-run Chinook salmon
    The commitment to fund actions on Battle Creek is long overdue, but the funding in the BO is inadequate by an order of magnitude.
  12. A stronger commitment to actions maintaining low-salinity habitat in the Delta Smelt Summer-Fall Habitat Action with commitments regarding Suisun Marsh Salinity Control Gate (SMSCG) operations and projects for other elements of habitat
    It is important to acknowledge the importance of summer-fall habitat representing half of the smelt life-cycle, but the commitment in the BO is vague and likely ineffective as formulated. Rather than being used more often, the SMSCG should simply be removed. It has been a detriment to smelt, salmon, steelhead, and sturgeon populations since its use began in 1989.

The BAD

  1. Drought Mitigation
    Drought mitigation in the BOs focuses on maintaining Shasta Reservoir’s cold-water-pool. The proposed action drops mitigation actions for wet years such as Fall X2. The proposed action drops previous OMR constraints that provided some protection in drought years. The one-hand-giveth-while-the-other-taketh-away approach is an old tired gambit. The ostensible improvement at Lake Shasta eliminates numeric targets for Shasta carryover storage.
  2. Real time management – protect when and where the fish are
    This is poor prescription because some listed species populations are so low that they are undetectable (e.g., Delta smelt). Larval life stages also go undetected. Past detection rates even for larger populations have been poor, and actions to reduce impacts have been gamed and trimmed to the bone. Real time detection does not protect primary productivity and food sources and other elements of critical habitats. The managers charged with managing have a long history of choosing water supply over fish protection.
  3. A more detailed description of Shasta Dam operations and a commitment to Cold Water Management Tiers
    This prescription does not protect listed winter-run salmon in droughts from thermal shock or dewatering of redds, which are the primary factors in recent low survival and production. Prior RPA and Recovery Plan requirements to fix problems with Spring Creek powerhouse (Whiskeytown Lake thermal curtain) and Shasta Dam warm water power releases are not included in the new salmon BO.
  4. “New” Science
    A commitment to maintaining long-term monitoring programs and recognizing past and present science is needed. “New” science funded and conducted by water contractors or federal/state project operators will ensure any new science will be biased – foxes assessing their effects on the henhouse. The science and its presentation and analyses have become more and more controlled by water supply entities, and less and less by resource agencies. The BOs give more control of science to water suppliers. The revisions to the draft BOs are clear evidence of the new realignment of roles and new controls on science.
  5. Performance Metrics for managing Old and Middle River reverse flows to limit salmonid loss to similar levels observed under the previous BiOp through explicit reductions in export pumping.
    The BOs’ performance measures for reverse flows are vague, ineffective, and unenforceable. Wild components of salmon populations were hard hit in droughts under previous BOs. “Similar” levels of loss are not protective and will not promote recovery.
  6. Performance Metrics for incubation and juvenile production of salmonids under the proposed Shasta Cold Water Pool Management strategy
    The BOs’ performance measures for cold water management at Lake Shasta are vague, ineffective, and unenforceable.
  7. Commitments to manage Old and Middle River reverse flows for limiting larval and juvenile delta smelt entrainment based on modeled recruitment estimates
    OMR rules have been one of the major restrictions on exports under the past BOs. The rules proved beneficial to the listed species survival (primarily reduced salvage and improved through-Delta survival of tagged salmon smolts). The new strategy would allow changes that would allow greater levels of exports under OMR reverse flow prescriptions. The poor survival of San Joaquin salmon under existing rules would remain poor or further decrease. Entrainment of young smelt (not measured under existing rules), an existing serious concern, would only worsen. Modeling entrainment risk has not worked and has not been verifiable. The main risks to smelt are pulling larvae into the central Delta with its poor habitat (not just to the south Delta pumps) and the destruction of their critical pelagic rearing habitat.
  8. Independent Review Panels to evaluate the science behind actions and outcomes
    This is nothing new. There have been so many “independent” review panels. I remember working with Pete Chadwick back in the mid-70s. He consulted on my projects on the Hudson River Estuary. He and his CDFG staff working on the Bay-Delta were on the cutting edge of estuary science. They trained the next generation and they in turn trained the next. Outsiders have only verified what CDFG already well understood. Same goes for NMFS and the USFWS, as well as UC Davis. Together as IEP they manage Bay-Delta and Central Valley science more than adequately with the help of a huge cadre of capable scientists among NGOs. Water agencies and other water suppliers just can’t handle the truth, so they hire their own consultants and many outside “independent” consultants.
  9. Ramping rates specificity for reservoir releases to reduce the risk of stranding
    Ramping rates do not work for eggs and fry salmon that are in gravel beds for up to several months. Reductions in flows from Keswick Reservoir after winter-run fry have left their nests (redds) in the fall strands up to 80% of new fall-run redds.

The Ugly

  1. Commitment to implement appropriate actions after two years of low winter-run Chinook salmon egg-to- fry survival.
    Shasta operations in the 2014 and 2015 drought killed 90-95% of the egg production of winter-run salmon. The new Salmon BO would make that acceptable under the ESA. It would stretch the no-take standard to no take in more than two years out of three.
  2. More specificity on collaborative planning with specific habitat restoration and facility commitments.
    More planning for habitat restoration and facilities is not needed. Reclamation, DWR and other responsible agencies should get on with prior commitments. The history of foot-dragging on habitat restoration in the Central Valley is a worthy rival to the foot-dragging by PG&E in maintaining and upgrading its infrastructure.
  3. A commitment to sediment supplementation and food-web studies for the protection of delta smelt.
    As proposed the supplementation of sediment would come in the form of the discharge of warm, polluted agricultural drainage water full of non-native predatory fish into critical habitats of listed fish.
  4. Dynamic, real-time monitoring of changing conditions and potential species impacts, within an improved scientific and adaptive-management-based decision-making framework; avoiding or minimizing fishery impacts while increasing operational flexibility.
    Real time management will not work for rarer listed species like Delta smelt. This has been tried for three decades and has not worked. The adaptive managers will be the same managers who produced the revised non-jeopardy BOs. “Operational flexibility” is a buzzword for increased diversions, primarily Delta exports.
  5. Operational rules that lay the foundation for eventual voluntary agreements on water flows for rivers that feed into the delta. Those agreements promise even greater protections and investments in fish and the environment.
    Most of the “even greater protections” will have to backfill the protections that these BOs took away. The Voluntary Agreements offer pennies on the dollar in terms of necessary flow through the Delta into the San Francisco Bay.
  6. Eliminating or Modifying Existing RPAs and Take Limits
    • Modifying year-round temperature and Shasta reservoir storage management program to minimize effects to endangered winter-run salmon.
      NMFS and CDFW were just starting to get it right. NMFS’s 2017 draft RPA for Shasta would have required stronger carryover storage requirements.
    • Long-term passage prescriptions at Shasta Dam and re-introduction of winter-run to its native habitat in the McCloud and/or Upper Sacramento Rivers.
      They were ready to start this program after promising initial feasibility studies. The foot draggers strung it out until Trump administration officials threatened in 2019 to arrest DWR personnel who were installing equipment to begin a pilot implementation.
    • Old and Middle River flow levels that limit the strength of the reverse flows
      There will be less of the needed restrictions under Reclamation’s new plan.
    • Prescriptions for additional technological measures at the facilities to enhance screening and increase survival of fish.
      There will be fewer planned upgrades to project facilities to protect fish than were promised under the previous BOs.
    • Prescribed additional measures to improve survival of San Joaquin steelhead smolts, including both increased San Joaquin River flows and export curtailments.
      No longer apply.
    • Prescribed flow management standard, a temperature management plan, additional technological fixes to temperature control structures, and, in the long term, a passage at Nimbus and Folsom dam to restore steelhead to native habitat.
      No longer apply.
    • Prescribed year-round minimum flow regime necessary to minimize project effects to each life-stage of steelhead, including new springtime flows that will support rearing habitat formation and inundation, and create pulses that allow salmon to migrate out successfully.
      No longer apply.
    • The Fall X2 provision has been eliminated.
      This flow-salinity RPA protected longfin and Delta smelt in summer and fall of wet years.
    • Take limits have been eliminated.
      They should have been revised to be more protective.

What is Missing

So much is missing that is within state and federal governments’ power and authority in the final approved Reclamation proposal. Here is a limited selection.

  • Effective Management of Shasta Cold-Water Pool
    Missing from the BOs are controls of Spring Creek powerhouse warm water releases into Keswick Reservoir, modifications to hydropower operations, long term Shasta storage rules, and modifications of water contractor deliveries. Combinations of these actions would have alleviated winter run salmon recruitment failures in 2014 and 2015. Reclamation’s approved proposal would allow such drastic recruitment failures in future droughts.
  • Commitment to comply with water quality standards on flow, water temperature, salinity, and export restrictions
    Reclamation has made no commitment to comply with state water quality standards or other state laws.
  • Commitment to provide needed pulsed flows
    Coordinated pulsed flows are needed to increase survival of hatchery and wild salmon. None are included in Reclamation’s plan, with the possible exception of a pulse from Shasta when it is likely to spill anyway.
  • Commitment to implement recovery plan actions
    Recovery, not just protection, is needed and is required by the ESA. These BO’s do not address recovery plans. The ESA goes beyond simple mitigation. The ESA focuses on minimization of effects, enhancement, and recovery.

In Conclusion: Ugly

Reclamation’s proposed action has been approved by the Services. The proposed action includes some good concepts for protective measures (though generally the requirements are vague, underfunded and not enforceable), and a suite of bad and downright ugly actions that will harm affected listed fish species. The overall mix will lead to much confusion, wringing of hands, blaming, ignoring of responsibility, initial lawsuits, and (if the initial lawsuits fail) further lawsuits when fish metrics fail to show improvement. Some actions will take time to implement, while some are already too little too late.

The Services should have issued jeopardy opinions with a suite of appropriate RPAs. That did not happen. Instead, the Services are allowing further risk of extinction to the listed species. The best example of this is allowing expected temperature-dependent egg mortality levels for Sacramento River winter-run Chinook salmon to occur in “Tier 3 and 4 years.” Mortality due to allowed temperature exceedance was a major cause in the recent decline in the winter-run salmon population, one of the few species listed as “endangered” rather than the more common “threatened” designation. The effect the salmon BO will allow is entirely avoidable and within the control of the state and federal agencies involved in permitting the CVP. NMFS has designated winter-run as a “Species in the Spotlight”; it’s more likely that it is now a “Target for Extinction.”

  1. USFWS summary, p. 13.
  2. The US Fish and Wildlife Service’s summary of both its own Biological Opinion for smelt and the National Marine Fisheries Service’s Biological Opinion for salmon, steelhead and green sturgeon is available at: https://www.fws.gov/sfbaydelta/cvp-swp/documents/ROC_on_LTO_Summary_FINAL.pdf
    For the complete USFWS and NMFS Biological Opinions and appendices, go to: https://www.fws.gov/sfbaydelta/CVP-SWP/index.htm