San Joaquin Salmon Restoration – Update

On March 8, I posted some questions about the San Joaquin salmon restoration program and its upcoming release of hatchery smolts. On March 18, CDFW released 105,000 hatchery smolts into the San Joaquin River near Merced.1

The release coincided with the modest peak in annual San Joaquin River flow (Figure 1). Delta outflow peaked near 70,000 cfs at that time. Water temperatures were also below the stressful level of 68°F (20°C) (Figure 2). Smolt releases in the past two years did not have such good conditions, and few survived to reach the Delta. In contrast, in the week following this year’s release nearly 500 of these marked Spring-Run smolts have shown up in fish salvage at the South Delta export facilities , a clear indication that many survived to the Delta. The salvage numbers also indicate the released smolts had to take a tough route through the Delta with no assurance that they were successful in reaching the Bay even under the high wet year Delta outflows. It remains to be seen how well these smolt releases from the past three years fare in terms of survival to the Bay (Chipps Island Trawl Survey) and Ocean (coastal fisheries returns). I stand by my recommendation of barging the smolts to the Golden Gate, which would assure 99% survival to the Ocean.

Figure 1. Hourly flow in the San Joaquin River near Vernalis from March 5 to April 4, 2016.

Figure 1. Hourly flow in the San Joaquin River near Vernalis from March 5 to April 4, 2016.

Figure 2. Water temperature (Deg F) in the San Joaquin River below Merced from March 5 to April 4, 2016.

Figure 2. Water temperature (Deg F) in the San Joaquin River below Merced from March 5 to April 4, 2016.

What Caused the Impending Extinction of Delta Smelt?

CSPA’s fisheries biologist Tom Cannon gave a presentation entitled “Contributing Cause of Smelt Decline: Water Exports” at a symposium on March 29, 2016 at UC Davis. The theme of the conference, sponsored by the Delta Stewardship Council, was: “Delta and Longfin Smelt: Is Extinction Inevitable?”

In his presentation, Tom put forth the hypothesis that the cause of the probable extinction of Delta smelt was the commencement of operation of the State Water Project’s Banks Pumping Plant in the mid-1970s. When Banks came on line, South Delta exports tripled, going from 2 million acre-feet to 6 million acre-feet per year. Tom’s hypothesis is that the mechanism of likely extinction was entrainment of Delta Smelt into the inflow to State and Federal South Delta pumping plants: exports.

The presentation’s first slide shows the familiar long-term Fall Midwater Trawl Index (Figure 1). Tom emphasized the sharp drop in the Index in 1981 (red circle in Figure 1), the first dry year of operations under the 1978 Delta Plan (water quality standards limiting operations of the Delta pumping plants). He noted that the decline likely started in the mid-1970s, but was most severe in 1981. There were recovery periods in the non-drought years of the 1990’s and 2010-2011. However, in 2001-2005, smelt and other Delta species crashed, a period now known as the “Pelagic Organism Decline,” or POD. Following a mild recovery in the wet year 2011, Delta smelt collapsed to record low indices in 2014 and 2015 (indices of 9 and 7, respectively, not shown in Figure 1).

Other slides depict (1) the huge losses of adult smelt as indexed by January1 salvage numbers in 1981 (Figure 2), and (2) the salvage counts of juvenile Delta smelt in spring 1981 (Figure 3). The total salvage for January 1981 alone was over 10,000 adult Delta smelt, which compares to a total of 56 in January 2015 and 12 in January 2016. The total juvenile Delta smelt salvage in spring 1981 exceeded 100,000; in 2015, it was 4.

An example of salvage during the 2001-2005 POD is winter-spring salvage in 2003 (Figure 4). Tom attributes the POD decline to the tens of thousands of Delta smelt lost to entrainment in winter and spring, including a likely large number of non-detected larvae under conditions of maximum exports.

According to Tom, export entrainment is the primary causal factor for the death spiral of Delta smelt, not low outflow. There were relatively high or improved smelt abundance indices in 1972, 1990, and 1991 (see Figure 1), which were all years with low outflows but also low exports. This is not to say, however, that low outflows are not also factors that contribute to high entrainment (Figures 2 and 3).

Tom concludes that Delta smelt are virtually extinct because their adult spawning numbers are insufficient to provide recovery even under 2016’s good (wet) conditions. Adult numbers are simply too low to produce sufficient offspring (Figure 5). The proof will come this spring, summer, and fall when indices of Delta smelt juveniles will likely remain critically low and not reach 2010 or 2011 levels, the last years when habitat conditions were favorable.

Tom Cannon Presentation – Contributing Cause of Smelt Decline: Water Exports

Figure 1. Fall Midwater Trawl Index for Delta smelt 1967-2013. (Source: CDFW.)

Figure 1. Fall Midwater Trawl Index for Delta smelt 1967-2013. (Source: CDFW.)

Figure 2. January salvage of adult Delta smelt at South Delta export pumps in 1981. Also shown is export rate (cfs) and Delta outflow (cfs). The maximum allowed export rate is 11,400 cfs. (Data Source: CDFW.)

Figure 2. January salvage of adult Delta smelt at South Delta export pumps in 1981. Also shown is export rate (cfs) and Delta outflow (cfs). The maximum allowed export rate is 11,400 cfs. (Data Source: CDFW.)

Figure 3. Spring salvage of juvenile Delta smelt at South Delta export pumps in 1981. Delta smelt juveniles begin reaching salvageable size (>20 mm) in early May. Also shown is export rate (cfs) and Delta outflow (cfs). The maximum allowed exportsrate is 11,400 cfs. (Data Source: CDFW)

Figure 3. Spring salvage of juvenile Delta smelt at South Delta export pumps in 1981. Delta smelt juveniles begin reaching salvageable size (>20 mm) in early May. Also shown is export rate (cfs) and Delta outflow (cfs). The maximum allowed exportsrate is 11,400 cfs. (Data Source: CDFW)

Figure 4. Winter-spring salvage of Delta smelt at south Delta export pumps in 2003. Delta smelt young begin reaching salvageable size (>20 mm) in early May. Also shown is export rate (acre-feet per day) by pumping plant. The maximum allowed export rate is 11,400 cfs (about 23,000 acre-feet per day). (Data Source: CDFW). Winter salvage is primarily adult smelt. Spring salvage is predominantly juvenile smelt (>20 mm). April entrainment of 5-15 mm larval smelt is not accounted for at salvage facilities, because they pass undetected through salvage screens.

Figure 4. Winter-spring salvage of Delta smelt at south Delta export pumps in 2003. Delta smelt young begin reaching salvageable size (>20 mm) in early May. Also shown is export rate (acre-feet per day) by pumping plant. The maximum allowed export rate is 11,400 cfs (about 23,000 acre-feet per day). (Data Source: CDFW). Winter salvage is primarily adult smelt. Spring salvage is predominantly juvenile smelt (>20 mm). April entrainment of 5-15 mm larval smelt is not accounted for at salvage facilities, because they pass undetected through salvage screens.

Figure 5. Index of adult Delta smelt spawner abundance from winter Kodiak Trawl Survey 2002-2016.

Figure 5. Index of adult Delta smelt spawner abundance from winter Kodiak Trawl Survey 2002-2016.

  1. Salvage collections are notoriously inefficient on small fish entrained into the pumping plants. Predation loss before entering the salvage facilities has been estimated to be higher than 90%.

Smelt Update – April 1, 2016

Since the last update, Delta and longfin smelt have continued their trends of record low numbers, as shown in the most recent Smelt Larvae Survey and 20-mm Survey. They are not yet gone, but close. It remains to be seen whether the good conditions provided so far in this wet winter 2016 can lead to some form of recovery for these two endangered species.

Longfin Smelt

With the high winter flows, the young from this year’s spawn are now distributed well to the west, although some remain in the north Delta (Figure 1). Their numbers continue at record low levels (Figure 2) despite a wet winter.

Figure 1. Longfin smelt catch in mid-March in Survey #1 of 20-mm Survey.

Figure 1. Longfin smelt catch in mid-March in Survey #1 of 20-mm Survey.

Figure 2. Average catch-per-unit-effort of young longfin smelt in mid-March 20-mm surveys from 2008-2016.

Figure 2. Average catch-per-unit-effort of young longfin smelt in mid-March 20-mm surveys from 2008-2016.

Delta Smelt

Delta smelt have yet to grow into the size range captured in the 20-mm Survey, but remain present in the last Smelt Larvae Survey (Figure 3). High winter through-Delta flows have resulted in a slightly more westward distribution than in recent drought years such as 2013 (Figure 4). Although numbers collected are very low, it is too early to determine relative production for 2016 compared to previous years in the Smelt Larvae Survey or the 20-mm Survey. Under similar wet winter-spring conditions in 2010 and 2011, Delta smelt had modest population improvements. It remains to be seen if the very low adult spawning population this year (in comparison to the populations in 2010 and 2011) can lead to some form of recovery in the population under this year’s relatively wet conditions.

Figure 3. Delta smelt larvae catch distribution in mid-March 2016 Smelt Larvae Survey.

Figure 3. Delta smelt larvae catch distribution in mid-March 2016 Smelt Larvae Survey.

Figure 4. Delta smelt larvae catch distribution in mid-March 2013 Smelt Larvae Survey.

Figure 4. Delta smelt larvae catch distribution in mid-March 2013 Smelt Larvae Survey.