The Future Potential of San Joaquin River Salmon

In an August 21 blog post, Dr. Peter Moyle described recent Delta fish science and the future of San Joaquin River salmon.  Dr. Moyle summarized five papers with relevance to the Central Valley.  Below, I comment on the discussion on the San Joaquin smolt salmon tagging study.

The first bullet point in Dr. Moyle’s blog post reads:  “Flows do not improve San Joaquin salmon survival but salvage does.”  He then makes observations, shown below in italics.

  •  “The study nevertheless shows that juvenile Chinook from the San Joaquin region are not surviving passage through the south Delta and that increased flows are not likely to increase their survival.” Comment: It is generally true that juvenile San Joaquin Chinook are not surviving passage.  However, the conclusion that increased flows are unlikely to increase survival is based on a series of six years with mostly low flows and one wet year, 2011, a year with record exports.  There is no doubt that San Joaquin salmon do better in wetter years.1  The survival of the relatively small number of radio-tagged hatchery smolts in the cited study was low because south Delta exports minimize the ability of smolts to escape the San Joaquin side of the Delta.  Most of the San Joaquin water (and salmon) goes to the export pumps.  Once there, putting the smolts in a taxi to the Bay does obviously help them escape the Delta.  Moyle fails to note that San Joaquin salmon are “ocean type”, meaning they move to the Delta often as fry or fingerlings, and rear in the Bay-Delta before moving to the ocean.  These fry/fingerlings were not included in the study and most certainly benefit from higher winter flows.
  • “Large-scale improvement of habitat in the south and central Delta is likely the key to improved survival, as shown by higher survival rates of fish from the Sacramento River that pass through the north Delta.” Comment:  Yes, if he means flow-habitat improvements by eliminating south Delta exports and improving positive flows.  Physical habitat improvements in the central and south Delta will not help without sufficient winter inflows to carry young salmon downstream to the Delta and to stop misdirected movement toward the export pumps if young salmon reach the Delta.
  • “The basic results showed such low survival of salmon passing through the Delta that returning adults would be too few to sustain the salmon populations in the San Joaquin basin.” Comment:  San Joaquin salmon do well in wet years. 1   Under current water operations in most years, river and Delta survival is low because most of the watershed’s water is diverted, held in reservoirs, or exported from the Delta.
  • The study indicates that the lack of decent habitat for juvenile salmon in the Delta means that most are picked off by predators (as shown in part by tagged fish moving in the wrong direction because the tags are in the stomachs of predators). Comment:  No, these were smolts, not smaller juveniles, and they were trying to find the ocean, not decent habitat.  They had to spend too much time trying to find the escape route from the Delta.  Eventually, they succumbed to a wide range of stressors.
  • “Essentially, fall-run Chinook populations in the San Joaquin basin are being sustained by straying hatchery fish from the Sacramento River system.” Comment:  All Central Valley salmon fall-run salmon populations are sustained directly or indirectly by hatcheries.  The San Joaquin has its own hatcheries whose smolts also benefit from higher flows. 3 While gene flow among the populations has been high, it does not preclude individual populations from developing river/watershed-specific characteristics through natural selection.
  • “How badly do we want to restore self-sustaining salmon runs to the San Joaquin and its tributaries? This question has to be asked in the context of future scenarios of climate change with increasingly variable conditions and likely permanent flooding of Delta islands.” Comment:  Moyle seems to suggest that restoring “self-sustaining” San Joaquin runs may not be worth the effort.  While “self-sustaining” may be very difficult to achieve for all Central Valley salmon populations given all the dams, loss of habitat, and water diversions, a balance of “wild” and hatchery salmon (and dependent fisheries) has been possible and will be so in the future if water resources are shared as required by federal and state laws.

  1. Salmon production is on average ten times better in wetter years. http://calsport.org/fisheriesblog/?p=1518
  2. Salmon production is on average ten times better in wetter years. http://calsport.org/fisheriesblog/?p=1518
  3.  http://calsport.org/fisheriesblog/?p=1403

Delta Smelt Summer 2018

After catching over 800 Delta smelt in 2011 (Figure 1) and near 30 in 2017 (Figure 2), the Summer Townet Survey captured only 3 in 2018 (Figure 3). The pattern is consistent with the spring 20-mm Survey collections

The only option now other than extinction is stocking hatchery smelt in large numbers in their primary summer-fall habitat, the Low Salinity Zone of the Bay-Delta. Release should be near the 2 ppt (3800 EC) location, commonly referred to as X2, which recently has been moving tidally back and forth between Collinsville and Sherman Island in the Sacramento River channel just downstream of the Emmaton gage (Figures 4 and 5). The X2 location has optimum salinity, water temperatures (<70oF), turbidity, and food for Delta smelt.

Figure 1. Summer Townet collections of Delta smelt 2011.

Figure 2. Summer Townet collections of Delta smelt 2017.

Figure 3. Summer Townet collections of Delta smelt 2018.

Figure 4. Water temperature at Emmaton late August 2018. High tide X2 water is 68-69oF.

Figure 5. Salinity (EC) at Emmaton late August 2018. High tide water is near X2 salinity (3800 EC).

“Epic” Salmon Fishing this Summer

Reports on the July 15 opener on the lower Sacramento fall-run salmon season are good.1 Reclamation and Sacramento River farmers have provided the flows needed to keep water temperatures down (Figure 1), allowing what appears to be a good run up the river from the Golden Gate. Openers in recent years have been poor because of low flows and high water temperatures, as well as low salmon numbers. Numbers are up, and water temperatures are down – good for fishing.

Figure 1. Higher flows in July have cooled the river despite many 100+ degree days. Source.

Sacramento Valley Salmon Resiliency Strategy

The Sacramento Valley Salmon Resiliency Strategy, June 2017, is the state’s strategy to improve the resilience of listed salmon to its activities, including water rights permits, State Water Project actions, CESA implementation, and CDFW management.

The document states on page 2:

Specific biological objectives have been identified for the Sacramento River that support the general need to increase survival and productivity of salmonids in the Sacramento Valley and to increase life history and genetic diversity. A summary of these biological objectives:

  1. Increase productivity by improving spawning and incubation conditions (habitat and water quality).
  2. Increase productivity by increasing juvenile salmonid survival.
  3. Support the full range of juvenile migration conditions to maintain life history diversity.
  4. Support the full range of adult migration conditions to maintain life history diversity.
  5. Maintain genetic integrity by limiting genetic influence from hatchery-produced fish and interbreeding of genetically or behaviorally distinct runs.

The Strategy is an aggressive approach to improving species viability and resiliency by implementing specific habitat restoration actions. (Emphasis and bullet numbering added)

The Strategy is defined as a “resiliency” strategy and not a recovery strategy for a reason. It does not include the actions necessary for recovery. It won’t fix the activities that caused the crisis in the first place. Over the past several decades, much restoration has occurred, yet fish populations continue to decline. Much stronger and more immediate management actions are needed to save the salmon populations. Habitat restoration alone will simply not suffice.

So what is missing?

  1. Spawning and incubation conditions – Missing are actions to maintain cold water temperatures and sufficient spawning flows in the reaches below all the major dams during spawning and incubation. A. Eliminate the water temperature increases caused when water from Whiskeytown Reservoir is routed through Spring Creek Powerhouse to Keswick Reservoir. B. Maintain cold water in the Sacramento River downstream to Red Bluff, not just to Redding. C. Eliminate dewatering of winter, spring, and fall–run salmon redds in the Sacramento River. D. For the American and Feather rivers, take actions similar to A through C that maintain cold water and eliminate redd stranding. E. Better manage reservoirs to place more emphasis on cold water pools and less on water deliveries.
  2. Juvenile salmon survival – Maintain adequate flows and water temperatures in rearing reaches to sustain growth and to reduce stress and predation.
  3. Full range of juvenile migration conditions – Maintain adequate flows and water temperatures in the lower rivers and the Delta throughout emigration seasons. Do not shave off early and late seasons.
  4. Adult migrations – Maintain adequate flows and water temperatures to assure adult survival, egg survival and gonad development during migration. Do not shave off early and late seasons.
  5. Genetic integrity – Move more toward conservation hatchery activities, reduce straying by barging smolts, implement natural floodplain rearing, mark all hatchery smolts, and introduce mark-selective recreational fisheries.

As for other planned actions like completing projects on Battle Creek and reintroducing salmon upstream of Central Valley rim reservoirs, let’s get on with it. If we keep the present snail’s pace, there is little hope for future salmon generations.

Would WaterFix Tunnel Intakes be Protective of North Delta Fish? You Judge!

The Department of Water Resources’ consultant on in the WaterFix tunnels hearing testified:

“But for those Smelts that are occurring in that area, the North Delta diversions will be designed to fish agency protective standards”… “That opening, based on analyses, would prevent entrainment of Smelts that are greater than about 21 to 22 millimeters.”1

“In the EIR/EIS, the only significant and unavoidable impact that we found was for Striped Bass and American Shad. This is because of entrainment of early life stages at the North Delta diversions. These are species that spawn upstream of the North Delta diversions, in large part…..2

For American Shad, studies suggest that many American Shad were upstream of the Delta and, therefore, when they’re coming down into the Delta, they would be sufficiently large to be screened by the North Delta diversions.”

Delta Smelt

Delta smelt spawn in the north Delta in late winter and early spring. Their juveniles occur through summer. Their young would be highly susceptible to entrainment throughout spring (Figure 1).

White Sturgeon

Sturgeon, both green and white, spawn above the Delta in the lower Sacramento River in early spring. Their larvae and early juvenile stages reach the Delta in spring at a size highly vulnerable to entrainment (Figure 2).

American Shad

American shad spawn in the lower Sacramento River and tributaries in late spring and summer. Their larvae and early juveniles are prevalent in the north Delta in late spring and would be highly vulnerable to entrainment (Figure 3).

Striped Bass

Striped bass spawn predominantly in the lower Sacramento River in spring. Their larvae reach the north Delta in May and June, and would be highly vulnerable to entrainment (Figure 4).

Splittail

Splittail spawn in the lower Sacramento River floodplain in spring. Their early juveniles reach the north Delta usually in May and would be highly vulnerable to entrainment (Figure 5).

Prickly Sculpin

Prickly sculpin, an abundant native Delta fish, spawn in the lower Sacramento River in late winter and their larvae are found in the north Delta in early spring and would be highly vulnerable to entrainment (Figure 6).

Sacramento Sucker

Sacramento sucker spawn in Valley rivers in spring. Their larvae and early juveniles are present in the north Delta throughout spring and would be highly vulnerable to entrainment (Figure 7).

Threadfin Shad

Non-native threadfin shad, the most abundant forage fish in the Delta, spawn from late spring into summer throughout the Delta and lower rivers. Their larvae and early juveniles are prevalent in the north Delta in late spring and early summer, and would be highly vulnerable to entrainment (Figure 8).

Summary and Conclusions

Larval and early juvenile lifestages of many Delta fishes would be highly vulnerable to entrainment through the screens of the proposed WaterFix north Delta intakes. Juvenile/fry of these and other species (salmon3) would be highly vulnerable to impingement and predation at the screens.

Figure 1. Length frequency of Delta smelt captured in the California Department Fish and Wildlife’s annual Delta-wide 20-mm Survey. For each sub-graph within this figure and each of the following figures, the x-axis shows the length in millimeters of captured fish, and y-axis shows the number of captured fish of each length. Note that most of the early spring post-spawn larvae and juveniles are of a size highly vulnerable to entrainment (<20 mm).

Figure 2. Length frequency of white sturgeon captured in the 20-mm Survey . Note larval sturgeon were captured soon after their spawning period in spring at a highly vulnerable size to entrainment. Many larvae of the main lower Sacramento River population of white sturgeon would pass the proposed WaterFix intakes.

Figure 3. Length frequency of American shad captured in the 20-mm Survey . Note that most of the shad would have to pass the proposed north Delta intakes in spring at a size highly vulnerable to entrainment (<20 mm).

Figure 4. Length frequency of striped bass captured in the 20-mm Survey . Note that most of these striped bass larvae would have had to pass the area of the proposed north Delta WaterFix intakes at a size would be highly vulnerable to entrainment (<20 mm).

Figure 5. Length frequency of splittail captured in the 20-mm Survey Note that many splittail spawn in the Sacramento Valley floodplain just upstream of the proposed north Delta WaterFix intakes, and that many of the juvenile splittail emigrating back to the Delta would pass the proposed WaterFix intakes at a size vulnerable to entrainment (<20 mm).

Figure 6. Length frequency of prickly sculpin captured in the 20-mm Survey . Note that the larvae of winter-spring spawning sculpin would be highly vulnerable to entrainment (<20 mm).

Figure 7. Length frequency of native Sacramento sucker captured in the 20-mm Survey . Note that the juveniles of late winter-early spring river spawning suckers return to the Delta at a size vulnerable to entrainment (<20 mm).

Figure 8. Length frequency of threadfin shad captured in the 20-mm Survey . Note the late spring-early summer spawning threadfin shad are highly vulnerable to entrainment (<20 mm).

  1. WaterFix hearing transcript, 2/23/18, Page 124, line 2:  Dr. Greenwood testimony at State Board WaterFix hearing.
  2. Id., Page 156, line 6.  Note that many shad and striped bass spawn their buoyant eggs in the area of the proposed intakes and immediately upstream, as well as in the lower Feather, Sacramento, and American rivers.  Nearly all the eggs and newly hatched larvae would pass the proposed CWF intakes.
  3. Much of the wild salmon production from the American and Feather rivers’ fall-run populations comes from fry (30-50 mm) leaving these rivers in winter.  Winter is the peak period of proposed north Delta diversions of the WaterFix project.  These fry would not be protected by the proposed WaterFix screens.