A Report from Puget Sound

Colleagues in the state of Washington write me (in italics below):

Sad to say but the Wild Fish Conservancy teaming with WDFW, using the ESA as a crutch, have eliminated pretty much all of the winter and summer steelhead fishing in Puget Sound streams. The salmon fishing regs are a mess and at the rate they are going, salmon seasons in Puget S. will vanish.

Comment: The salmon season was closed this year here in California to protect future fisheries. Puget Sound fisheries are closed to protect vanishing endangered breeds including Orcas1. Our hope here is that we protect both future fisheries and endangered species. One does not have to preclude the other.

With the massive human population increase in Puget Sound coupled with the anti-hatchery people, coupled with the inability of “habitat improvements” keeping up with habitat destruction, coupled with wildfires, climate change, low river flows/high water temperatures/extraneous bad water quality, things don’t look good for the future. ESA is only used here to eliminate hatcheries. Eventually, it will be just like the Redfish Lake situation where they got down to one returning male and had to go back to hatchery production. The ESU for Puget Sound includes all of the streams plus hatcheries. It seems that with the elimination of hatcheries, the anti’s will eliminate both the commercial and sport fisheries. What is really sad is the 36000 adult Chinook that were “surplus’ last year at the George Adams Hatchery and given to the crab fishermen (according to WDFW). The old WDFW people would have supported the anglers and tried to make things better. The current downward trend is near bottom (i.e., Chinook in Puget Sound declared extinct.)

Comment: It did not have to go this way in Puget Sound. It does not have to in California, either. We in California should learn from the mistakes to the north. There is a different way. More on the “way” in future posts.

Sacramento River 2023 Temperature Management Plan – What is Missing

It is that time of year again for another Sacramento River Temperature Management Plan.  You know, the plan adopted to protect Sacramento River salmon from the operation of the Shasta/Trinity Division of the federal Central Valley Project of US Department of Interior, Bureau of Reclamation (Reclamation).  Past plans have failed to protect salmon since they became a requirement in 1990 in the State Water Board’s Water Rights Order 90-05.

The plans have failed even in wet years, including this wet year (four wet years have occurred since 2010).  This year, Shasta Reservoir is full, and there is more than ample cold water to deliver to the salmon below Shasta Dam (a “Tier 1” wet year).  Oroville and Folsom reservoirs are also full this year and ready to help Shasta supply the needs of salmon in the Sacramento River and Bay-Delta.

In this year’s 2023-sacramento-river-temperature-management-plan, Reclamation has committed to providing 53.5oF water in the upper ten river miles (RM) of the Sacramento River downstream of Keswick Dam (RMs 290-300).  53.5ºF is the upper optimal threshold water temperature for adult salmon spawning, egg incubation, and fry emergence.  Reclamation has not always met this temperature in past wet years (Figure 1).

Other important benchmarks are maintaining lower Sacramento River water temperatures at and upstream of Red Bluff (RM 240) at <56oF and at <68oF downstream of Red Bluff (RMs 100-240).  Reclamation has exceeded these temperatures in the three most recent wet years (Figure 2).  Reclamation has not met summer water temperatures in the lower Sacramento River below 56oF at Red Bluff (RM 240) and below 68oF at Wilkins Slough (RM 120), because water diversions leave flows too low in summer (Figure 3).  In fact, Reclamation has given up trying to meet those temperatures.  The 2023 TMP evaluates maintaining 56oF at Balls Ferry, 36 miles upstream of Red Bluff, but concludes, without any supporting data or evidence, that maintaining that objective would be too uncertain and risky.

Analyses of flow and water temperature data for Wilkins Slough indicates it generally takes 6,000 to 10,000 cfs flow at Wilkins Slough to maintain water temperatures below 68oF in June, depending on air temperatures.  Note the water temperature in early June 2023 reached above 68oF (Figure 2) as flows fell below 10,000 cfs (Figure 3).

Table 1 shows optimal temperatures for adult migration, holding, and spawning.  Adult salmon migrating, holding, or spawning are stressed by water temperatures above 60oF.  Water temperature above 68oF are considered “lethal” for migrating salmon – such temperatures occurred in June of three wet years (Figure 2).  Stressful water temperatures occurred during the spring in the lower Sacramento River in all four wet years (Figure 3).  Spawning and egg incubation water temperatures exceeded the target 53oF for spring-summer spawning winter run salmon in all four wet years (Figure 1).

The 2023 Sacramento River Temperature Management Plan

“Significant uncertainties exist within the forecast that will require intensive real-time operations management throughout the summer to achieve the various goals and targets throughout the system.” (2023 TMP, p. 3) 

Comment:  Reclamation’s repeated strategy of staying close to 56º in a limited stretch of the Sacramento River, even in a year like 2023 when there is really no reason to adopt such a conservative strategy, unnecessarily compromises the salmon and sets a course for failure to meet permit requirements.  At the beginning of June, there were still endangered adult winter-run and spring-run salmon migrating up the lower Sacramento River.

As in 2023, Reclamation made overt decisions in 2017 and 2019 to drop flows below 7000 cfs in the lower reaches of the lower Sacramento River, knowing water temperatures would exceed their permitted upper limit and water quality standard of 68oF.  Flows closer to Keswick Dam in Redding also dropped, allowing Red Bluff water temperatures to exceed their limit of 56oF.

“The strategy of meeting 53.5 at CCR will likely result in average daily temperatures at or near 56 degrees F at BSF. Reclamation does not propose to operate the TCD explicitly to meet 56 degrees F at BSF under conditions that may require changes to TCD operations that could risk cold water pool resources for use later in the temperature management season. This would cause an unreasonable risk to other goals and objectives”.  (2023 TMP, p. 4)

Comment:  The TMP acknowledges from the start that Reclamation has no intention of meeting the 56oF standard at Balls Ferry (RM 276), let alone Red Bluff (RM 240).  With CCR maintained at 53oF, it takes more dam releases to keep the 60-mile upper river reach below 56oF and the 100+ miles of lower river below 68oF.  The 2023 Plan thus plainly ignores these other license and water quality standard requirements important to salmon survival.  Lower river water temperatures above 68oF through late summer will also compromise the fall-run salmon migration up the river.

Update

Water temperatures in the Sacramento River downstream of Red Bluff steadily increased through June (Figure 4).  In over 100 miles of the Sacramento River from Red Bluff downstream to the mouth of the Feather River, Reclamation is operating in violation of federal/state water quality standards, the federal/state Endangered Species Acts, and state water rights permits.  Water temperatures have reached lethal levels for migrating adult and juvenile salmon blocking their migrations up and down the river, respectively.  Stress, disease, and predation are compromising two brood years of salmon production in a wet year!  Water diversions from the river below Red Bluff are approaching 6000 cfs (Figure 5) not counting diversions upstream or from tributaries.

In Conclusion

In conclusion, the Sacramento River Temperature Management Plan should cover all of Reclamation’s obligations under its permits and all applicable water quality standards, not just water temperatures in the upper 10 river miles of over 200 river miles used by salmon.

Table 1. Water temperature objectives for adult Central Valley salmon. (Sources: San Joaquin River Recovery Plan). Note that the temperatures cited in this figure are the maximum daily temperatures. The 2023 TMP target for winter-run Chinook spawning is an average daily temperature of 53.5ºF.

Figure 1, Water temperature (daily average) at the Clear Creek gage in the Sacramento River above the mouth of Clear Creek (RM 290) in wet years 2011, 2017, 2019, and 2023.

Figure 2. Water temperature (daily average) at the Red Bluff (RM 240) and Wilkins Slough (RM 120) gages in the Sacramento River in wet years 2011, 2017, 2019, and 2023.

Figure 3. Lower Sacramento River flow at the Wilkins Slough gage (RM 120) in wet years 2011, 2017, 2019, and 2023.

Figure 4. Water temperature and streamflow at Bend Bridge (RM 250) and Wilkins Slough (RM 120) in May-June 2023. Note 68oF water quality standard and critical water temperature for salmon is exceeded.in late June at Wilkins Slough gage. The 56oF standard was exceeded at Bend Bridge for much of May and June.

Figure 5. Streamflow at various gages in the Sacramento River from Keswick Dam (RM 300), Bend Bridge (RM 250) downstream to Wilkins Slough (RM 120) in May-June 2023. Note: tributary inflows in the reach below Bend gage in mid-June were approximately 5000 cfs in mid-May. Keswick Dam releases were increased in late June to maintain deliveries and sustain 5000 cfs at Wilkins Slough gage.

 

Mormon Crickets and Pikeminnow

When settlers moved into the desert west a century or so ago and started irrigating crops, they created new habitats for some species that Mother Nature had held in check. Species such as Mormon Crickets became pests, overwhelming the irrigated crops produced in the unnatural habitats and plaguing their human guests.1

The same goes for the Sacramento pikeminnow. The dams and farmland reclaimed from wetlands in California’s Central Valley have created ideal habitat for the pikeminnow. Pikeminnownow have become so abundant they have become predator nuisances that feed on ever-decreasing numbers of young salmon and steelhead. Pikeminnow also migrate from the Delta to spawn in valley rivers below dams where they prey on young salmonids. Juvenile pikeminnow compete with young salmonids for aquatic insects and feeding territory.

The problem also occurs on the Eel River, a large coastal salmon river that once featured some of the largest salmon and steelhead runs in California.2 Sacramento pikeminnow are not indigenous to the Eel River: they were introduced by anglers who brought “minnows” to use as bait to fish for trout stocked in PG&E’s Lake Pillsbury on the Eel River’s mainstem.

There are three ways to deal with the pikeminnow problem. One is to selectively eradicate them. The Columbia River water folks tried this first approach for decades now – that has not worked.3 The Eel River folks are trying weir traps.4

Another approach is to reduce the habitat conditions that allowed enables the high production of pikeminnow in the first place. Replacing warm, slow-moving pools with colder, faster-moving water makes habitat less conducive to pikeminnow.

A third approach is allowing salmon and steelhead to get to places the pikeminnow are not. Many organizations are seeking the removal of Scott Dam, which creates Lake Pillsbury. This will allow salmon and steelhead access to the Eel River upstream of the current lake. There are natural barriers upstream that steelhead and salmon can pass but that pikeminnow, which are weaker swimmers, cannot.

To help recover our native salmonids in the Central Valley, a combination of weirs and colder water, reverse engineering the habitat to reduce pikeminnow production, and the reintroduction of salmonids in higher elevations too cold for pikeminnow could be the recipe for success.

Whatever Happened to Adaptive Management?

The big hype over the past several decades in the Central Valley has been Adaptive Management.  Whatever happened to it?  Did we forget about it, or simply take it for granted?  Did we rebrand it, morph it into something else?  I wrote a “white paper” on the topic for CALFED over 20 years ago.  My version was more about conducting experiments to address unknowns to help inform management decisions.

The definitions immediately below are further refinements.

Adaptive management, also known as adaptive resource management or adaptive environmental assessment and management, is a structured, iterative process of robust decision making in the face of uncertainty, with an aim to reducing uncertainty over time via system monitoring.

Above definition from Wikipedia

Adaptive management is a science-based, structured approach to improving our understanding of the problems and uncertainties of environmental and water management. (Older)

Adaptive management provides a structured approach for adaptation in a context of rapid, often unprecedented, and unpredictable environmental change. Its success depends on support from the larger social, regulatory, and institutional context, or “governance system.”   (Newer)

Above definitions from Delta Stewardship Council

The Delta Stewardship Council holds a forum every two years on Adaptive Management.  This year, the forum delves into governance.  Presenters and participants are from Delta governments and those who would like to participate in Delta government.  Topics include equitable adaptation, governance systems and needs, and human dimensions of adaptation and governance. 

While that all is nice, it is not what I am looking for to manage the Delta ecosystem.  I am more for the older definition.  We need answers.

Why are the Sacramento River and Delta so warm in the past decade or so?  Is it all climate change, drought, and air temperatures?  What has changed, and what can be done about it?  Those are my questions.  We need more adaptive management questions and some scientific experiments and monitoring.  I have analyzed much of the available data and developed theories on causes (with supporting data and analyses), but theories need testing through controlled scientific study that can lead to effective changes: adaptive management.

My theory is that we need 5000 to 10,000 cfs streamflow in the Sacramento River to keep it cool in summer.  We need to test that theory to find out how much water is really needed, and how much, when, and where under highly variable air temperatures.

Water managers have consistently opposed this kind of experiment.  They refuse to use the water for this kind of experiment.  And more importantly, they refuse to do an experiment that might produce the answer they don’t want to be known, let alone supported by rigorous study: more flow is needed.

On the contrary, there is a constant, built-in bias towards “experimenting” with how little water one can use to achieve biological objectives.  If too little water won’t achieve the desired outcome, managers, and in some cases scientists, try modifying the threshold biological objectives.

56oF was supposed to be fine for salmon spawning near Redding.  In 2021 and 2022, agencies including Reclamation thought they could get away with 58-60oF for periods (they couldn’t, Figure 1).  It turns out from controlled experiments that 56oF was too warm – 53oF is needed to keep eggs alive and well in the gravel.  There is simply no getting around it.  The agencies were experimenting with critically endangered salmon with poorly designed, un-scientific management strategies.

In the Vernalis Adaptive Management Program in the early 2000s, ten years of experimenting found that relatively small increments of flow increase in the San Joaquin River from mid-April through mid-May, combined with minimum Delta exports by the state and federal water projects, did not dramatically increase survival of San Joaquin River juvenile salmon migrating downstream.  The “adaptive” element of adaptive management did not thereafter increase the flows to see if that would improve juvenile survival.  On the contrary, water managers declared that more flows don’t help, and the Bureau of Reclamation since 2011 has serially ignored the flow requirements and export restrictions in mid-April through mid-May to which the rules were supposed to revert after the “experiment” concluded.

Here are some further questions that are begging for controlled scientific experiments, associated monitoring, and adaptive action:

What will it take to keep the spring-summer Delta water temperature in key areas (such as the low salinity zone) below 72oF, at least through spring (Figure 2)?

Is there something we can do to keep the Bay cooler in summer (Figure 3)?

There is little doubt that improving these temperatures would improve conditions for fish.  But the scientific community needs to push itself and water managers past built-in biases in order to evaluate the feasibility of such improvements.

Figure 1. 2021 and 2022 water temperatures in the Sacramento River above the mouth of Clear Creek near Redding. Red Line is safe level for salmon eggs.

Figure 2. April-June water temperatures in Sacramento River at Freeport in the north Delta in spring in past decade. Yellow line is critical level 68oF for migrating juvenile and adult salmon.

Figure 3. Water temperatures at the Benicia Bridge at the west end of Suisun Bay, 1998-2023. Red line is critical level for salmon survival during migration.

 

 

Yuba River – Plan for New Fish Facilities at Daguerre Point Dam

On May 16, 2023, the California Department of Fish and Wildlife, National Marine Fisheries Service, and Yuba Water Agency announced a plan to design and build a fish bypass at Daguerre Point Dam on the lower Yuba River (see Figure below).

At present, the dam has fish ladders on both ends of the dam that don’t work well.  The plan’s conceptual design is for a bypass channel that would allow fish to circumvent the existing dam; the plan would retain the dam.  The plan would reconfigure the diversion works at the dam’s south end and add effective fish screens to the agricultural diversion infrastructure at both ends of the dam.

Essentially, the bypass would operate as a long, high-capacity fish ladder that would also allow passage of sturgeon and lamprey, which cannot use the existing fish ladders.  In addition to improving the upstream migration of adult fish, the bypass would also allow for more natural downstream passage of juvenile fish.

For adult salmon and steelhead migrants headed upstream to spawn in the higher-flow, cooler, and gravel-abundant 10-mile reach between Daguerre Point Dam and Englebright Dam, the bypass would likely reduce delays caused by reluctance to enter the existing ladders and by the difficult ascent up those ladders.  For juveniles outmigrating downstream, the bypass could offer more natural conditions than simply spilling over the dam or seeking out the openings to the two ladders and passing downstream in the ladders.  The existing features place the young fish at the mercy of native and non-native fish predators below the dam.

The bypass concept is one of several designs that could reduce existing problems at Daguerre.  In addition to passage improvement, the concept could accommodate fish collection and segregation, and may be a feasible location for a conservation hatchery.

Several key elements should be added to this bypass plan, including:

  1. A segregation weir that that allows selective passage and capture of upstream and downstream migrants for processing and transfer.
  2. Predator removal, either at the segregation weir or by means of another nearby arrangement, to minimize predation below the dam. Predator control would likely benefit the entire lower Yuba system.  Major predators in terms of numbers and threat below Daguerre Dam include striped bass, smallmouth bass, pikeminnow, and American shad.
  3. Stream habitat improvements upstream, in the bypass, and below the dam, in particular those that create refugia for juvenile salmon, steelhead, and sturgeon, and that are less favorable to the fish that eat them.
  4. Fish handling, processing, and holding facilities.
  5. A conservation hatchery for salmon and steelhead.

Alternative designs should also be fully evaluated through CEQA/NEPA and CESA/ESA processes.  For example, one alternative may involve upgrading one or both of the existing ladders to include as many of the advantageous features as possible.