Corps gears up for summer fish operations – June news release

Sorry to say this is not in California – it’s the Columbia River system with its eight major mainstem dams.1  Summer “spills” have been the heart of the Columbia salmon recovery because they have helped smolts reach the ocean. The cost of “spills” is primarily lost hydropower to federal and state utilities. That was the price for keeping all the dams.

In the Central Valley the dams were built for hydropower, flood control, and water supply. Here we have Settlement Contractors with water rights that preceded the dams, who agreed to contracts that allowed the dams to be built. These folks come first in line when it comes to federal and state water rights to stored water. After these folks come the big water districts and urban water contractors of the Central Valley Project and the State Water Project.

The Columbia dams also have fish ladders that allow adult salmon to reach tributaries and headwaters and require smolts to pass the dams to reach the ocean. In the Central Valley we have wild and hatchery salmon populations below the large dams, and there are no fish ladders. (Note there are also no ladders on the big Grand Coulee and Hells Canyon Columbia system dams.)

The equivalent action of “summer spills” on the Columbia would be “spring spills” from Central Valley reservoirs. However, with stored water over-appropriated (even in most flood years when too little storage is carried over for the following year), there really is no water for “spring spills” without taking water away from people, mostly irrigators, who expect to get that water. (Note there are some higher flow requirements on the Sacramento and San Joaquin rivers and from the Delta in wetter years, but these are not near the amount of water in “spills”.)

Would Central Valley salmon benefit from “spring spills”? Yes, substantially, especially in non-flood wet and normal years. Obviously, there would be insufficient water for “spills” in some drier years and even in some normal years.

What do they do on the Columbia River in dry years? They have a smolt collection and transport program that collects wild and hatchery smolts and transports them with trucks and barges around the dams and to the estuary.

The federal recovery plan for Central Valley salmon does not include either spills or transport, but instead requires trap-and-haul above the dams. This is important and likely essential to prevent extinction of some salmon races (e.g., winter and spring run), but we also need spill and transport programs downstream of the dams. If we want to retain these fisheries, we must invest in spill and transport programs now. These programs, like those on the Columbia, should be paid for by those benefitting from the flood control, electricity, water supply and recreation provided by the dams.

Summer 2015 Temporary Urgency Change Petition: Deadly for Delta Smelt

What does the May 21 TUCP mean for the Delta if the State Board adopts it for the summer? What would be the consequences of weakening the outdated standards for outflow and salinity do to the Bay-Delta ecosystem?

letter

Location of X2 and Delta Outflow

The location of X2, the critical location of the Low Salinity Zone center where salinity is 2 parts per thousand (ppt), is shown below for various Net Delta Outflow Indices (NDOI). The existing standards and proposed changes are as follows:

  • 4000 cfs NDOI in July – 3000 cfs proposed
  • 3000 cfs NDOI August – 2500 cfs proposed for September
  • X2 (2.78 mmhoes EC) required at Emmaton (EMM) moved upstream to Threemile Slough (TMS) through August 15 (no limit thereafter)
Location of X2 in Bay-Delta at various Delta outflows (NDOI cfs).

Location of X2 in Bay-Delta at various Delta outflows (NDOI cfs).

Effect on Water Temperature

In June weakened standards from a previous TUCP were 4000 cfs NDOI, with X2 allowed at TMS. Water temperature at X2 location by mid-June reached 70-73°F, levels considered sublethal but stressful on Delta Smelt.

stressful on Delta Smelt.   Early June 2015 water temperatures in X2 region.

Early June 2015 water temperatures in X2 region.

On June 12, 2015, X2 reached Rio Vista Bridge (for first time this year) on high tide after midnight at 72°F (NDOI was 5200 cfs). Afternoon water temperatures at bridge at low tide had been >74°F. When EC was 2000 at TMS, the water temperature was 72°F. On this date in 2012, the X2 location was downstream of EMM, with an NDOI of 7100 cfs and a water temperature of 69°F. On this date in 2013, X2 was downstream of EMM, with an NDOI of 7500 cfs and a water temperature of 68°F. On this date in 2014, X2 was upstream of EMM, with an NDOI of 3150 cfs and a water temperature of 72°F. The pattern is consistent with the hypothesis that the further X2 is east, the warmer the water temperature will be. The pattern also indicates that the normal standard of 7100 cfs keeps water temperatures at X2 below 70°F, at least in late spring.

My prediction for water temperature for July through September in the X2 region is shown below. This conservative prediction is based on June 2015 and June-September 2014 data.

Predicted summer water temperatures in X2 region of the Delta under proposed weakened standards.

Predicted summer water temperatures in X2 region of the Delta under proposed weakened standards.

Consequences to Smelt and Salmon

Delta Smelt, already on the brink of extinction, will be further stressed by near lethal water temperatures in the X2 region. We can assume that only a small number of smelt remain in the X2 zone going into summer 2015, as compared to 2012 (see following charts). Any remaining smelt in the X2 zone must be protected at least at the normal standards as in 2012. Any weakening of the critical year standards will jeopardize the existence of the species.

No Delta Smelt were collected from the X2 zone in late May 2015.  Only 5 were collected at the northern Deep Water Ship C

No Delta Smelt were collected from the X2 zone in late May 2015. Only 5 were collected at the northern Deep Water Ship Channel station.”

 In contrast to 2015, the distribution of Delta Smelt in late spring 2012 shows higher numbers collected in the X2 zone below Emmaton under NDOIs of 8000-10,000 cfs.  Water temperatures at that time in the X2 zone were <70°F.


In contrast to 2015, the distribution of Delta Smelt in late spring 2012 shows higher numbers collected in the X2 zone below Emmaton under NDOIs of 8000-10,000 cfs. Water temperatures at that time in the X2 zone were <70°F.

Fall Run Chinook Salmon enter the Bay-Delta on their spawning migrations from the ocean in August-September. Expected near -lethal water temperature (>77°F) will delay and stress these fish. Expected water temperatures greater than 70°F will stop migrations and degrade subsequent adult salmon pre-spawn survival and egg viability. The proposed 2500 cfs outflow standard for September will result in water temperatures of 73-75°F in the X2 zone near Rio Vista in mid-September. In contrast, in mid -September 2012, outflow was 7100 cfs and water temperatures at Rio Vista and the X2 zone near Emmaton were <70°F.

Are Winter and Spring Run Salmon being protected below Shasta? Absolutely Not!

By now it is common knowledge that 95% of last year’s endangered Winter Run Chinook salmon production in Sacramento River below Shasta-Keswick Dams was lost due to low flows and high water temperatures in summer. Large losses also occurred to Spring Run and Fall Run salmon. As they did last year, the US Fish and Wildlife Service, National Marine Fisheries Service, US Bureau of Reclamation, California Department of Fish and Wildlife, and California State Water Resources Control Board are managing water releases from Shasta Reservoir to ensure flows and water temperatures are adequate for Spring Run and Winter Run salmon spawning adults and eggs and alevins in gravel beds. This year they all assured us they had adequate water and cold water pool to maintain flow and cool water temperatures to protect the salmon in the upper spawning reach near Redding. They acknowledged there was insufficient water to protect the lower spawning reach below Redding (down to Red Bluff).

Already two months into the irrigation season and after a quarter million acre-feet of water released to water contractors (about 10% of Shasta storage and 25% of the cold water pool), Reclamation has determined they overestimated the available amount of cold water pool and their ability to maintain flow and water temperatures for salmon into the fall. Fearing the worst, storage releases have been reduced, and protective water temperature limits in the Redding spawning reach have been raised to conserve the cold water pool.

We only have to look at the State Board’s own science review of water temperature effects on salmon1  to see if water management in the spawning reach is protecting salmon.

  1. Mean Weekly Maximum Water Temperature (MWMT) should not exceed 13C (55.4F) – generally referred to as 56°F limit.
    1. Keswick Dam releases have been slightly higher than 56°F MWMT.
    2. Sacramento River compliance point above Clear Creek has MWMT of 60°F.
    3. Clear Creek upstream of mouth has a MWMT greater than 60°F.
    4. Sacramento River below Clear Creek at Anderson has MWMT OF 62°F.
  2. Daily maximum water temperature should not exceed 13.5-14.5°C (56-58°F) from fertilization through fry development.
    1. Keswick releases have reached 56°F.
    2. Sacramento River at compliance point above Clear Creek has reached 60.7°F.
    3. Sacramento River below Clear Creek at Anderson has reached 62°F.
  3. Optimal temperatures for egg incubation is <13°C (55°F).
    1. Exceeded throughout spawning reach.
  4. Water temperature when pre-spawning mortality of adult Chinook becomes pronounced in ripe adult salmon – 13-15.5°C (55-60°F)
    1. Exceeded throughout spawning reach.

Obviously the 56-60°F maximum daily water temperatures in the primary spawning reach above the mouth of Clear Creek at Redding are a concern. The State Board has raised compliance from 56°F to 58°F in attempt to conserve cool water through the summer. They have also reduced allowed Keswick releases from 8000-9000 cfs to 7500 cfs for the summer to save storage and the cold water pool. Reclamation is keeping Keswick releases near 7000 cfs.

Our concern is for pre-spawn ripe adult mortality and egg viability, as well as egg viability and embryo survival in redds. The agencies seem to think maximum daily temperatures near 60°F are ok, when they are not. Destroying this year’s egg production before the cold water pool is exhausted should not be the approach. Maximum temperatures should not exceed 56°F above Clear Creek. A maximum temperature of 58°F should be the absolute limit.

Far more important is the water temperatures in the redds, which tend to occur in shallow pool tailouts that are often warmer than average river temperatures. There must be a margin of protection for this difference. Redd temperatures should also be carefully monitored.

Clear Creek at Redding Tempratures

Delta science – so much talk!

As we enter the second year of Temporary Urgency Changes for Delta operations, the State Water Board is leaving Delta fish with no protection from our waste and the summer heat while allowing the storage and diversion of millions of acre-feet of water for cities and farms. Little or no water left the Delta for the Bay this spring, and even less will leave this summer. The Smelt Working Group charged with protecting two species of endangered smelt is about to take its summer hiatus as South Delta water temperature hits 25°C. The State Board has recently been forced to reduce Shasta Reservoir agricultural releases for fear of running out of cool water for winter run salmon again this summer.

The State Board’s “drought relief” orders keep little water reaching the Bay and allow salt water to encroach into the Delta. The False River Barrier has been installed to keep salt out of south Delta water diversions at the expense of north Delta habitat. Interior, USFWS, NMFS, EPA, and CDFW, our resource protection agencies, have “concurred” with the Temporary Urgent Change Petitions from Reclamation and CDWR, and the State Water Board has complied. 1

Meanwhile, the remnants of the Delta Smelt population have become isolated in the Sacramento Deep Water Ship Channel. Reclamation scientists assure us that the smelt will be fine and will descend into the cooler water at the bottom of the channel. The lack of smelt in their traditional designated critical habitat of Suisun Bay and the western Delta low-salinity-zone is apparently not a concern.

In the midst of all this “devastation”, the Delta Science Program held a Delta Challenges Workshop this past March.

“On March 16, 2015 the Delta Stewardship Council’s Delta Science Program hosted a workshop to summarize the risks and challenges facing the Bay-Delta system. These challenges include a multitude of stressors that threaten our ability to achieve the Delta Plan’s coequal goals. Numerous reviews, reports and articles describe the stressors and risks facing the contemporary Delta, but this information is spread across diverse publications, journal articles, and lengthy technical reports. The information has not yet been presented in a highly concise, readable way by an independent set of distinguished science experts.” 2

 

The Workshop

Dr. Moyle suggested that we prepare for the worst: “We have to prepare for the extinction of Delta smelt: “It seems very likely to happen in the next year or two,” Dr. Moyle said. “The Fall Midwater Trawl index has never been lower, we’re basically not getting any in any of our samples, and then most recently, the Kodiak Trawl sampling has found very few, even in places they normally aggregate.” He noted that the results of the most recent Kodiak Trawl, a survey aimed at catching smelt in the places where they’re supposed to be, and where they have been in the past, were pretty dismal. “They got 6 smelt, 4 females and 2 males. So the smelt are pretty much gone from this system. We don’t know yet but they could easily have reached a threshold that they can’t get back over, that they can’t survive. We need to be thinking now of answers to questions like: how will we know when the smelt is extinct in the wild? Who declares that? How can the captive populations present in Byron, how can these captive populations be used for re-introduction when better conditions return, at least temporarily, or even should they? And how does management of the Delta change if the Delta smelt are gone? What do we do, essentially, in the absence of Delta smelt?”

Others spoke on adaptive management: “Dr. Goodwin asked Maria Rea about doing large landscape-scale experiments. “To really do an experiment on the scale that needs to be done, and it’s an experiment so you don’t necessarily know what the outcome is, that puts people making decisions in a very difficult position, and I just wonder, how, as a science/policy/management community, what needs to be done to allow these landscape-scale experiments to go on?”

“We do need to get better at experimentation,” Maria Rea answered, noting that with salmon, they’ve done a bunch of tagged fish studies, some with active adaptive management. “The Vernalis Adaptive Management Program had an active component to it, but the number of fish tagged was insufficient to allow any real conclusions to be drawn from that, and so I think we’ve got quite a bit of work to do to. If we’re going to do a large-scale experiment and actually manipulate the system, then let’s make sure we’re growing enough fish and getting enough tags to put in the system that will actually be able to deduce something from the data that we get.”

The need for more money for more science came up: Dr. Luoma noted that since between 1997 and 2010, there was a large injection of science into the system, tens of millions of dollars. “That was a sign of what we need to keep things moving rapidly,” he said. “That money has dried up … If we’re going to really continue on this journey of trying to make progress, it’s obvious we need a big injection of science somewhere managed by the science program. We need an injection of science that allows us all to work together. That’s desperately needed now or else we’re just going to start flailing.”

“We need to explore performance measures, of having something that we can track that helps the policy makers understand the question, what has to happen next. “I think it was Bill Dennison who ran that workshop several years ago, showed us what you can do with a really organized system of performance measures that gets the public involved, gets the policy makers involved. We can do that, we just haven’t done it. I think this is something we really have to focus on doing right.”

Of course, there is always the concept that the Delta continues to evolve and remains hard to understand: Dr. Mike Healey began by noting that one of Jim Cloern’s comments especially resonated with him. “His comment that the Delta is a continually evolving system and we’re never going to be able to fully pin it down. Several people have been talking about wicked problems. Wicked problems have a formal definition in planning and management, and one of the characteristics of wicked problems is that they can’t be solved, they can only be managed. I think that’s probably what we’re looking at is coming up with a system of management that will be hopefully be relatively effective, rather than imagining that we can clearly define this problem and ultimately provide a solution.”

Then there is always the “reality check” and a “happy place somewhere down the road”:
“Once you’ve answered that question, you need to then concern yourself with what’s actually feasible but most of us want something that we’re really not going to be able to get, so we’re going to need to be able to make a reality check and decide what among the things we’d like to have we can actually accomplish, and then the final question is, how do we get to where we want to go from where we are now? And I think we still have a lot of work to do on those latter three questions,” he said. “We’re not anywhere near coming up with the final management plan for this problem as yet, I don’t think,” he said. “But I hope that whatever we can come up with can make some kind of a contribution to making progress, down the road towards that happy place.”

A potential for “boldness” from “outsiders” who can provide a “fresh look” at the problems:
“I really think there is an opportunity here for some boldness, and I hope that we as a foursome will be a bit bold,” he said. “I really do hope that we basically embrace ideas that we can agree upon and present them to you as things that would be the next steps moving forward, or at least our ideas of what that might be, because we need to move beyond just simply continuing to monitor this system. We really need to begin to actually implement some projects, some experiments, and really move that next step down the road to actually beginning to deal with some of the changes that are being imposed on the system and seeing if we can come up with a better and more beneficial ending with some of our attempts. I know it’s fraught with lots of difficulty, and we’re going to make lost of mistakes, but I think we need to be bold and move forward. And hopefully we can give you some ideas on how we think that might be best done.”

And finally, “something learned”, “fun”, and a “ridiculous challenge”:
After public comment, Letty Belin with the Department of the Interior then gave some final thoughts. “I think it’s been an extraordinary day,” she said. “I bet you there’s not a single person in this room that hasn’t learned something significant. I’m still amazed that we got this incredibly talented and experienced panel to accept what I acknowledge is a ridiculous charge. If I had this assignment, I would first turn it back to the teacher and say this is impossible, you cannot summarize this stuff in 15 to 20 pages, and then I’d ask what size can the font be, can it be like .333 but anyway I know it’s particularly fun to hear your reactions and use words like fun.

“I can’t tell you how important I think this effort is,” she continued. “I think it’s going to be incredibly helpful, because policy making in such a complex scientific environment, we need guideposts and people, you all who have both the scientific expertise and the wisdom gained through that, we really are fortunate to be able to get your expertise, so thank you so much.”

Not a word on the drought or changes to Delta water quality standards, or the effects of having no freshwater flow into the Bay.

  1. At a State Board drought workshop earlier this year, the Board chairperson asked the NMFS representative what “concurrence” meant. The NMFS rep responded by stating he had looked up the definition in a dictionary, but they really did not understand its meaning in this case.
  2. http://mavensnotebook.com/2015/04/24/delta-challenges-workshop-part-4-fish-birds-and-habitat/

Hatchery Reform – Part 3

Previously… Part 1: Central Valley Salmon and Steelhead Hatchery Program Reform & Part 2: Hatchery Reform

Contingency Release Strategies for Coleman National Fish Hatchery Juvenile Fall Chinook Salmon due to Severe Drought Conditions in 20141

“Substantial data are available to show that transporting Coleman NFH fall Chinook salmon to the west Delta would likely produce substantial increases in ocean harvest opportunity but will also result in a significant increased rate of straying as they mature and return to freshwater. The levels of straying anticipated are likely to compromise some of the hatchery objectives, including contributions to harvest in the upper Sacramento River and the ability to collect adequate broodstock at the Coleman NFH in future years, particularly 2016. Although the levels of straying anticipated from releasing fish into the West Delta are unfavorable, this release strategy may in fact represent the best possible option when faced with the possibility of losing the entire 2013 production year. In future years, under less extreme conditions, the standard protocol for releasing Chinook from the Coleman NFH will continue to be on-site releases into Battle Creek.”

There are two measures the Coleman Hatchery could adopt that would help to alleviate the straying problem associated with out-planting hatchery production. (1) Barging smolts to the Bay from Knights Landing area (above the mouth of the Feather River) would help imprint smolts on the Sacramento River. During barging, water is continually circulated through the fish tanks unlike during trucking. (2) Fry out-planting to the Yolo Bypass (Sacramento River source-water) would produce more natural smolts that would be less inclined to stray.

“The 1988-1992 period represents the most recent extended severe drought in the Central Valley. At that time the Service released nearly the entire production of fall Chinook to off-site locations to circumvent poor conditions in the lower Sacramento River and Delta. Conditions in the river and Delta were poorest during the spring of 1992 emigration season. Releases from the Coleman NFH into the West Delta in 1992 survived at a rate nearly 18 times higher than releases into Battle Creek, with a commensurate increase in ocean harvest. Owing to their markedly improved survival, West Delta releases from that same year also outperformed on-site releases in regards to returns to the hatchery. More than twice as many adult returns to the Coleman NFH in 1994 resulted from West Delta releases as compared to releases conducted into Battle Creek. If the Coleman NFH had released all production on-site in 1992 the hatchery would not have had sufficient returns of adults to meet production targets in 1994.”

Similar results are likely for the 2012-2015 drought. Despite these facts, there are many people who believe straying is unacceptable. These individuals hold out hope that “wild” Fall Chinook may someday recover in the Valley. To keep up such hopes we should adopt the two recommendations above, as well as continue to improve spawning and rearing habitats in the rivers. Our best hope for wild native genetic fish recovery is to incorporate natural habitats above the dams in trap-and-haul projects. At present, Fall Run Chinook and Steelhead are generally not being actively considered for these new programs.

“Implementation and Contingencies: The Service and California Department of Fish and Wildlife (CDFW) have coordinated a schedule for the delivery (trucking) of hatchery production from the five state and federal hatcheries to acclimation net pens in the west Delta. However, if a precipitation event occurs in March or April, environmental conditions/criteria may be re-assessed and if none of the criteria above are forecast to occur, then groups of Coleman NFH fall Chinook salmon juveniles meeting appropriate size criteria for an on-site release (i.e., at or about 90/lb) may be released into Battle Creek per usual procedures. Further, criteria are expected to be assessed during the three following periods: mid-March, first of April, and mid-April. If criteria above are not met or expected to be met within a three week window, then on-site releases of appropriately sized fish will also occur shortly thereafter. Criteria may also be re-assessed one to two weeks prior to scheduled trucking dates and, again, if criteria above are not met or not predicted to be met within a three week window, then on-site releases of those groups of fish will be considered to instead occur on-site shortly thereafter. If during any of these assessments, existing/predicted conditions are expected to meet the criteria triggering consideration of the alternative release strategy, then preparations will begin, continue, or be implemented to truck appropriate groups of fish to the acclimation net pens in the west Delta as scheduled.”

These drought-year plans focus on early river releases and trucking to the west Delta. Both of these options will lead to poor survival. Instead, fry-fingerling out-planting to the Yolo Bypass, Sutter Bypass, and Bay-Delta should be considered for Jan-Feb. Barging to the Bay should be considered for Mar-Apr smolt releases. If trucking is retained, it should be further to the west (e.g., Collinsville or Pittsburg), not Rio Vista which is in the zone of influence of the South Delta Export pumps.

Hatchery Selection. Oregon Department of Fish and Wildlife. 2011.2

“Our results support the finding outlined by others that even contemporary hatchery practices (e.g. using wild brood stock, pairwise matings) can produce fish that have lowered reproductive success in the wild. This evidence suggests that hatcheries may need to consider how to replicate the intricacies of natural breeding behaviors if they are to produce fish for supplementation programs that truly help recover endangered populations.”

In-hatchery replication of natural breeding behavior is another complicated subject worth further consideration in Central Valley hatchery programs. For more on the subject see: http://www.hatcheryandwild.com .

This post is part of a 4 part series on hatchery reform, check back into the California Fisheries Blog over the next week for Part 4.