Delta Exports Reduced in Winter 2020 to Protect Salmon and Smelt

One of the ramifications of dry conditions in winter 2020 has been the need to cut Delta exports to protect salmon and smelt listed under the state and federal endangered species acts. Lack of rain has led to reduced Delta inflow and outflow (Figure 1), which in turn has required reductions in south Delta exports (Figure 1), per the state’s 2009 incidental take permit and the 2019 federal biological opinions.1

The state permit requirement is prescribed to protect longfin smelt, which need protection under the present circumstances (Figures 2 and 3). The permit’s mitigation prescription (Figure 4) is to limit exports by limiting how negative flows in Old and Middle River (OMR) in the central Delta can get. Under the permit, negative OMR flows have generally been limited as early in the year as February in dry years like 2020; this limits exports and maintains Delta outflow. OMR flows were limited this winter (Figure 5). The mid-February survey (Figure 6) indicated a continuing risk that smelt larvae would be drawn into the central Delta if exports were increased. Exports have in fact increased (Figure 1) and OMR flow has become more negative (Figure 5) in March, increasing the risk to smelt despite being within limits set (Figure 4). March surveys should portray the effect of the increased risk factors.

The new federal take permits (BOs) are supposed to protect listed winter-run and spring-run salmon, Delta smelt, and steelhead, as well as the essential habitat of all the salmon, whose young are found in large numbers in the Delta in winter (Figure 7). Protections for these fish under the new BOs are vague at best.

Meanwhile, the state is in the process of developing a new incidental take permit that will cover winter-run and spring-run Chinook salmon and Delta smelt as well as longfin smelt. The risks to Delta fish are real. To be effective, the new ITP at minimum should not let spring outflow from the Delta fall below 10,000 cfs, and it should require maintaining February OMR levels during periods of low Delta inflow at the levels they were in February 2020 (Figure 5). This greater level of export restrictions should be required in each year with low Delta inflows until such time as the longfin smelt have grown out of the larval stage and moved downstream into the Bay. Even this level of protection may not protect the population from significant losses.

Figure 1. Delta outflow and exports in winter 2020. TRP=federal exports , HRO=state exports, DTO=outflow, FPT=Freeport Sacramento River inflow.

Figure 2. The catch density distribution of longfin smelt larvae in early February 2020 Smelt Larva Survey. Red arrow denotes direction of net flow in central and south Delta toward south Delta export pumping plants during survey period.

Figure 3. The catch density distribution of longfin smelt larvae in early February 2012 Smelt Larva Survey. Red arrow denotes direction of net flow in central and south Delta toward south Delta export pumping plants during survey period.

Figure 4. Permit Condition #5.2 from 2009 state longfin smelt incidental take permit.

Figure 5. Combined Old and Middle River flows in winter 2020.

Figure 6. The catch density distribution of longfin smelt larvae in mid-February 2020.
Source: Smelt Larva Survey.

Figure 7. Daily Catch of juvenile salmon upstream of Delta at Knight’s Landing fall-winter of water year 2020.

 

How Protective is the State’s Plan for Delta Fishes?

California’s Attorney General has sued the federal government over the new federal biological opinions for the operation of the Central Valley Project (CVP) and the State Water Project (SWP). But in fact, the State’s plan for operating the Central Valley operations of the State Water Project is not much better than the Bureau of Reclamation’s federal plan in terms of protecting Delta fish. The State’s plan is built on the same theory that the water projects can divert more water by monitoring fish presence and backing off on diversions when monitoring detects fish. This so-called “real-time operation” was also the foundation of the Department of Water Resources’ (DWR) proposal to protect fish in the 2016-2019 hearings on DWR’s proposed Delta tunnels (“WaterFix”).

The major difference between the new state and federal plans for Delta operations is that the State plan retains a requirement for increased flow in the summer and fall of wetter water years to protect smelt. The State’s draft EIR for the Long Term Operation of the State Water Project (LTO EIR) describes the proposed Summer-Fall X2 Action for Delta outflow (Figures 1 and 2). The action/criteria proposed is to maintain “X2” (the location in the Bay-Delta where salinity measures ~2 ppt chloride, or 3800 EC) under prescribed limits in summer and fall months by water-year type.

The LTO EIR describes two alternatives: the Proposed Project and Alternative 4.1 Both would limit monthly average or 14-day average X2 at river kilometer 80 (near the CDEC Collinsville gage). The Proposed Project includes only September and October X2 objectives, while Alternative 4 also covers June-August for wet years. Under both alternatives, criteria also include opening the Suisun Marsh Salinity Control Gates (SMSCG), an action to reduce EC at Collinsville gage and in Suisun Marsh and Montezuma Slough, which would raise salinity in eastern Suisun Bay.

I discussed the ramifications of the federal Biological Opinions in a September 2019 post. The only major beneficial change that the LTO EIR proposes is adding summer X2 criteria in Alt 4 to extend outflow protection from June 20 to August 31. The new Fall X2 requirement (September-October) in the LTO EIR would be less protective than existing Fall X2 objectives, because the new state requirement would move the compliance point upstream from km74 to km80.

In order to understand how the state’s proposed new Summer-Fall X2 requirement would work, I examine below how the action might have applied in recent water years 2016-2019, two below normal water years and two wet water years..

Below Normal Water Years 2016 and 2018

Under the LTO EIR criteria (both the Proposed Project and Alt 4 alternatives), the X2 location and low salinity zone would be similar to historical 2016 conditions (Figure 3), except that outflow could be lower and salinity higher in June, when there would be higher exports, less outflow, and a warmer more upstream low salinity zone (Figure 4). The main benefit of the X2 Action under Alt 4 would be that it would extend the D1641 agricultural salinity standards past June 20 by making them also apply from June 20 through August. Both the D1641 and Alt 4 criteria allow significant daily variation in X2: 14-day and monthly averages.

In 2018 (Figure 5) there would be a similar potential negative effect in June and a positive benefit in August under Alt 4.

Wet Water Years 2017 and 2019

Under the proposed LTO EIR criteria for wet years, Fall X2 criteria (September-October) would be the same as described above for below normal years. This would weaken protection in comparison with the previous Fall X2 requirements in the 2008-09 biological opinions (Figures 6 and 7). Summer (June-August) criteria would be generally less protective than existing D1641 salinity standards for wet years. If the State were to adopt the LTO EIR summer criteria, salinities would be higher and the low salinity zone further upstream and warmer than occurred in June-August of wet years 2017 and 2019. This would allow higher exports.

Summary and Conclusion

Under both the Proposed Project and Alternative 4, the LTO EIR’s Summer-Fall Proposed Plan for Delta outflow (Figures 1 and 2), Delta outflows would be lower, south Delta exports would be greater, and the low salinity zone further upstream and warmer in the fall (Sep-Oct) of wet years. Such changes would be highly detrimental to salmon and smelt. In below normal years, outflows may be higher from June 20 through August under Alt 4. Such changes would be beneficial to salmon and smelt.

Operation of the SMSCG would lower EC at Collinsville and in Montezuma Slough and increased EC in eastern Suisun Bay. This would be detrimental to smelt rearing in Suisun Bay. For more detail on this issue, see http://calsport.org/fisheriesblog/?p=2813.

Overall, the State’s plan would weaken existing X2 compliance criteria and result in higher exports of water from the south Delta in September and October in wet years. Alternative 4 would potentially provide more summer outflow in below normal years, which currently have no summer ag-salinity standard.

Figure 1. Comparison of Summer-Fall actions for the Proposed Project and Alternative 4.

Figure 2. Proposed Summer-Fall Actions in LTO EIR Alternative 4 (Table 5, p I-2 in EIR).

Figure 3. Collinsville EC in below-normal water year 2016. Salinity (EC) at Collinsville (~km 80) June-Dec 2016, a below normal water year. Red line shows proposed monthly-average EC objective in Alt 4.

Figure 4. Summer water temperature at Rio Vista in northwest Delta in 2016. Note in early summer water temperatures tend to be higher in the lower range of net river flow and high seasonal tides.

Figure 5. Salinity (EC) at Collinsville (~km 80) June-Dec 2018, a below normal water year. Red line shows proposed monthly-average EC objective proposed only in Alt 4.

Figure 6. Salinity (EC) at Collinsville (~km 80) June-Dec 2017, a wet water year. Red line shows proposed monthly-average or 14-day EC objectives in the Proposed Project and Alt 4.

Figure 7. Salinity (EC) at Collinsville (~km 80) June-Dec 2019, a wet water year. Red line shows proposed monthly-average or 14-day EC objectives in the Proposed Project and Alt 4.

 

  1. According to the description in the EIR, Alternative 4 is a more smelt-friendly alternative than the Proposed Project.

Predators versus River Flow

I keep emphasizing the need for fall flows to get Central Valley salmon fry, fingerling, sub-yearling smolts, and yearling smolts to and through the Delta to the Bay. This especially applies to wild spring-run and to wild and hatchery winter-run and late-fall run, the Chinook salmon runs most in danger of extinction. Extinction comes from population decline and loss of genetic diversity from lower river flows and fragmented habitat. 1

The reason river flow is important is that flow affects habitat, growth, migration, and predation of emigrating salmon.

The long, slow reservoirs behind the mainstem dams on the Columbia River studied by Conner and Tiffan (2012)2 have habitat similar to the long, slow reaches of the lower Sacramento and San Joaquin rivers in the Central Valley. Furthermore, the Delta with its tides acts as a “main-stem” dam, slowing the outward movement of water through the Delta and salmon exiting to San Francisco Bay. The Delta has also been described as the place “where predators meet prey” – where the effectiveness of predation and the role played by “Anthropogenic Contact Points” is accentuated by modified freshwater flows.

The Sacramento River channel at Walnut Grove is one of the key “anthropogenic” contact points in the Delta. The major outlets from the Sacramento River channel to the central Delta, the Delta Cross Channel and Georgiana Slough, are located here (Figure 1). Lehman et al. (2019)3 describe the predator contact points at this location in Figure 1, including submerged aquatic vegetation, rip-rapped levees, docks, and diversions. The role of these particular contact points in predation on juvenile salmon is no doubt significant.

Lehman et al. point out the difficulty in removing the predators and the problematic contact infrastructure. However, they don’t address the role river flow and associated hydrodynamics play in modifying the effects of predators or specific contact points.

In the fall during the peak of winter-run emigration, Walnut Grove is the place where the Sacramento River channel in the north Delta slows and is “diverted” into the abyss of the central Delta. Few salmon escape the central Delta’s many predators and its “anthropogenic contact points”, including the south Delta export pumping facilities. Under low Sacramento River fall inflows (around 12,000 daily average flow at Freeport), high tides cause most of the water and salmon coming down the Sacramento River to divert into the central Delta via the Delta Cross Channel (DCC) and Georgiana Slough (Figure 2). Those young salmon remaining in the Sacramento channel are then vulnerable to the contact points and predators under lower water velocities. If river inflows are higher and the DCC is closed, the risks to young salmon is greatly reduced (Figure 3).

In conclusion, the Lehman study funded by the Metropolitan Water District describes the role of predators and contact point infrastructure including submerged aquatic vegetation, docks, riprap, and diversions. However, the Lehman study does not address the key factors in the fall loss of juvenile fish in the Delta: lower flows and the diversion of water into the central Delta for export. Closing the Delta Cross Channel and increasing river flows are the prescriptions needed to cut losses of emigrating endangered Central Valley salmon. Cutting south Delta exports in the fall would also be beneficial.

Figure 1. Predation contact points near Walnut Grove in the north Delta. Source: From Lehman et al. 2019.

Figure 2. Measured streamflows at USGS gages near Walnut Grove on 12/1/2019 at 8:00 am high tide. The DCC was open and the Sacramento River at Freeport inflow to the Delta was 12,500 cfs.

Figure 3. Measured streamflows at USGS gages near Walnut Grove on 12/5/2019 at the noon high tide. The DCC was closed and the Freeport inflow to the Delta was 21,000 cfs.

  1. Sturrock et al. 2019. https://onlinelibrary.wiley.com/doi/10.1111/gcb.14896
  2. Connor, W. P., and K. F. Tiffan. 2012. Evidence for parr growth as a factor affecting parr-smolt-survival. Transactions of the American Fisheries Society 141:1207–1218, 2012.
  3. Lehman, B.M., et al. 2019. https://escholarship.org/uc/item/2dg499z4

Essential Needs for the Recovery of Endangered Winter-Run Salmon

Summer spawning and egg incubation water temperatures in the upper Sacramento River below Shasta Dam is a well-known and documented key to the recovery of winter-run salmon Chinook salmon. In a December 2018 post, I noted the importance of early-fall flows to support the emigration of juvenile winter-run salmon from spawning and early rearing areas of the upper Sacramento River near Redding. In this post, I add another measure to the list of essential needs.

  • Late-fall flows – Flows to move winter-run juveniles from the upper and lower river into and through the Delta in the late fall.

What kind of late-fall flows are specifically needed? The type that occurred in December 2019 from a spate of storms (Figure 1). The 10,000+ cfs flow in the lower Sacramento River got wild winter-run salmon smolts through the lower Sacramento River, as seen from the Knights Landing screw-trap catches. The 20,000+ cfs early-December pulse of Delta outflow got wild winter-run salmon smolts moving through the Bay toward the ocean, as seen in the Chipps Island Suisun Bay trawl catches.

I have previously recommended extending Fall X2 Delta outflow protections1 and reducing Delta exports2 to help the winter-run smolts during their emigration to the ocean. As it was, 10,000+ cfs exports in the latter half of December 2019 took over half of the potential Delta outflow. Figure 1 clearly shows the importance of the late-fall flows to the emigration of winter-run.

Observed patterns of winter run emigration provide further evidence of the need for flows in the late fall. Figure 2 shows late fall 2017 conditions when there was no late fall flow pulse. The movement of winter-run smolts through the Bay was delayed, occurring in small spurts from late January through March. There is no doubt that one-to-three-month delays in smolt migrations from the river and Delta to the ocean are detrimental to the population and to recovery.

Figure 3 shows the latefall flow pattern over the past decade. Recovery of winter-run salmon depends on protecting the flow pulses. The tendency is to export as much of the first flows of the water supply season as possible and get it stored in south-of-Delta reservoirs. Most of the late-fall rainfall was already captured in upstream reservoirs, so these flow pulses are just a fraction of Central Valley’s natural flows.

A close look at Figure 3 shows minimal Delta outflow in the late fall of 2011 and 2017. Both years were just coming off wet water years. Shasta Reservoir had above-average storage for December in both years (>3 MAF, two-thirds full). Modest commitments of reservoir water could have greatly benefitted winter-run emigration. Inflows to Shasta reservoir in December of both of those two years were over 200 TAF. An added release of less than half that inflow (100 TAF) could have provided five days of 10,000 cfs pulse flow to the December release pattern in both years. Such a pulse flow, in combination with reduced Delta exports (Figure 4), would have provided five days of 20,000+ cfs Delta outflows in December 2011 and 2017 to support wild winter-run smolt emigration and winter-run recovery.

Figure 1. Catch patterns of juvenile wild winter-run salmon in the upper Sacramento River at Red Bluff, the lower Sacramento River at Knights Landing, and at Chipps Island in the upper Bay in fall 2019. Red circles denote catch peaks associated with fall pulsed flows.

Figure 2. Catch patterns of juvenile wild winter-run salmon in the upper Sacramento River at Red Bluff, the lower Sacramento River at Knights Landing, and at Chipps Island in the upper Bay in fall-winter 2017-18. Red circles show dispersed timing of emigration and lack of large catch peaks in the absence of fall pulsed flows.

Figure 3. Delta outflow in late fall 2010-2019. Note lowest flows were in 2011, 2013, 2015, and 2017.

Figure 4. December 2011, 2017, and 2019 south Delta exports at the state Banks (HRO) and federal Tracy (TRP) pumping plants. Capacities are 7500 and 4400 cfs, respectively. Note the extremely high and unusual December 2019 exports.

Downward Trend in San Francisco Bay Longfin Smelt

In my last posts on longfin smelt, I expressed some optimism about their recovery from the 2013-2015 drought based on 2017 and 2018 population data (Figure 1).1 I have changed my mind. In this wet water year 2019, the longfin have again crashed.

The long-term trend over four wet-year November adult trawl surveys, including this year (2019), continues downward (Figures 2-5). The trend portrays the underlying strong spawner-recruit relationship: the number of spawners (eggs) is the key factor that determines recruits. On top of that, poor recruitment in drier years (Figure 6) is driving recruitment-per-spawner down. There is 10-100 times higher recruitment from wetter years.

What is it about both dry years and wetter years like 2019 that is so bad? It is low Delta outflow and high exports in the November-December period.

Longfin smelt spawn in November-December in fresh water.2 When their freshwater habitat is in the San Joaquin channel in the central Delta upstream of Jersey Point (See location in Figure 2, Figures 7 and 8), the newly hatched larvae are highly susceptible to unlimited November and December exports. Although 2019 was a wet year, these conditions were present in November and December (Figures 9 and 10).

The prognosis for longfin smelt under current and planned water operations in the Delta is grim. The state and federal water projects need to increase Delta outflow and reduce exports in November and December to reduce spawning of longfin smelt in the central and south Delta.

Figure 1. Fall Midwater Trawl Index for longfin smelt, 1967-2018. Source: http://www.dfg.ca.gov/delta/data/fmwt/indices.asp

Figure 2. Catch distribution of longfin smelt adults in the November 1998 fall midwater trawl survey.

Figure 3. Catch distribution of longfin smelt adults in the November 2011 fall midwater trawl survey.

Figure 4. Catch distribution of longfin smelt adults in the November 2017 fall midwater trawl survey.

Figure 5. Catch distribution of longfin smelt adults in the November 2019 fall midwater trawl survey.

Figure 6. Longfin Recruits (Fall Midwater Trawl Index) vs Spawners (Index from two years prior) in Log10 scale. The relationship is very strong and highly statistically significant. Adding Delta outflow in winter-spring as a factor makes the relationship even stronger. Recruits per spawner are dramatically lower in drier, lower-outflow years (red years). Spawners in 2017 and 2018 were at record low levels. Recruits in 2011 and 2017 were relatively high because the Fall X2 provision in the 2008 Biological Opinion was implemented. Source: http://calsport.org/fisheriesblog/?p=2513.

Figure 7. Salinity (EC) in November and December 2017 at Jersey Point in the lower San Joaquin River channel of the west Delta. Spawning would occur in fresh water (below 500 EC).

Figure 8. Salinity (EC) in November and December 2018 at Jersey Point in the lower San Joaquin River channel of the west Delta. Spawning would occur in freshwater (below 500 EC), which occurred upstream of Jersey Point.

Figure 9. Salinity (EC) in November and December 2019 at Jersey Point in the lower San Joaquin River channel of the west Delta. Spawning would occur in freshwater (below 500 EC), which occurred upstream of Jersey Point.

Figure 10. Tidally filtered flow in two channels in the lower San Joaquin River upstream of Jersey Point, portraying net flows toward to the south Delta export pumps.