Sturgeon Science Symposium Puts Onus on Sport Fishing

Life History of Southern DPS Green Sturgeon

The Problem – Sturgeon are Declining

A day-long symposium on March 3, 2015, Sturgeon in the Sacramento–San Joaquin
Watershed: New Insights to Support Conservation and Management,1 put the onus on sport fishermen to save Central Valley sturgeon. Contributors suggested that to maintain a healthy population of white sturgeon, mortality of adult females has to be eliminated, sport fishing harvest of adults should be halted, and sport fishing should be confined to no more than catch-and-release, with no fishing during the spawning season.

The stated reason for such constraints is that there is a 15- to 20-year period until first spawning, and that thereafter sturgeon often spawn only once every five years. “[I]t is essential not to lose the enormous re-population potential of each spawning female.”

The contributors also noted that strong year classes of sturgeon only occur in wet years when young survival is high. The 2006 year class was the last year class to contribute strongly to the adult population. Essentially what they are saying is that survival of young is so poor and intermittent that recruitment into the adult population is too low to allow any sport fishing harvest.

Of note, there was no mention whether the number of adults spawners has been or is now a limiting factor in the number of recruits produced in the very wet years. Such a state would indeed be a great concern. If the number of eggs laid in very wet years with the present adult population was insufficient to saturate the existing spawning and rearing habitat with young, then the population would be on an accelerated path to extinction. However, if the number of eggs laid is sufficient to saturate the habitat and recruitment (survival of young) is only a function of habitat conditions, then the reason for poor recruitment is not over-fishing but poor or degraded habitat. The intermediate condition where both factors are important is possible if not likely. How the fishery should be managed would also be different in the three conditions.

Also important are any changes in the trajectory of the habitat conditions. If habitat is being gradually degraded by man’s direct effects or climate change, that too can drive the population downward by reducing the production capacity of habitat or increasing the natural mortality of sturgeon. Sport fishing harvest has to be sensitive to such changes, if only to being falsely blamed for any decline or accepting a need to change even to the point of mitigating for the other effects.

Approach to Recovery

Based on the symposium and its summary paper it appears that the onus has been put on sport fishing as the cause as well as the solution to declining sturgeon populations. There was little mention about the effect of habitat conditions (other than the historical imposition of dams). There was mention of stranding and rescue of sturgeon in the Valley bypasses. “An individual-based model indicated that in the absence of rescue, the current population of green sturgeon in the river would have declined by 33% over 50 years (Thomas et al. 2013).” This anecdote was offered more as evidence that harvest should be curtailed as opposed to being a major factor in the decline that should be fixed. The fact is that large numbers of adult sturgeon get “lost” or become stranded or die in the Yolo and Sutter bypasses and in the Colusa Basin Drain each year, especially in wet years when their eggs are most needed.

There was discussion of juvenile survival. “[L]ittle is known of the swimming capacities of larval sturgeons, though the risk of larval sturgeon entrainment is likely influenced by both the ontogeny of swimming capacity and the interactions of sturgeon with water diversions.
Green sturgeon were also much more likely to become impinged upon screens (than White Sturgeon). “Of the more than 3,300 water diversions located in the Sacramento–San Joaquin watershed, the majority (ca. 98%) are estimated to be unscreened. The number of green sturgeon entrained and killed by unscreened water diversions is unknown….. Therefore, efforts to increase the number of migrating green sturgeon that successfully reach estuarine and marine environments should focus on juvenile life history stages, and take into account the behavioral and physiological changes that accompany such a migration… Substantial recruitment depends on extremely high Delta outflows during winter and spring. The mechanisms underlying this relationship are the subject of on-going investigations, but are likely some combination of adult attraction to upstream spawning grounds, suitability of spawning substrate, and survival of age–0 fish during the migration downstream to the estuary. (Emphasis added)

Symposium Conclusions and Recommendation

There were three primary conclusions and associated recommendations from the symposium.

  1. Maintain a healthy population of white sturgeon by eliminating mortality of adult females. Sportfishing harvest of adults should be halted, or fishing at least confined to catch-and-release outside of the spawning season. Having survived the 15- to 20-year period until first spawning, and subsequently only spawning every 5 years, it is essential not to lose the enormous re-population potential of each spawning female. Loss of a single spawning female that will produce several hundred thousand eggs each time she spawns. Comment: There was no mention of reducing the stranding of sturgeon in the flood bypasses (Yolo and Sutter) despite stating the important contribution of 24 rescued in a limited effort in a 2010 overflow event. Hundreds, perhaps thousands, of adult sturgeon stray into the bypasses each year.2 Many are lost or unable to find suitable spawning habitat. That compares to the several hundred harvested each year by sport fishermen (see figure below) under strict harvest regulations, out of an adult population of 25,000-50,000.3

  2. Protect and restore critical key habitat in order to conserve and reestablish to conserve and reestablish sturgeon populations. Gravel beds are critical for successful spawning and egg survival. Deep holes are critical as energetic refuges for sturgeon holding in the river.Comment: No mention was made that many of these key spawning habitats are degraded in dry years by low flows and high water temperatures in the late spring spawning season. Demersal adhesive eggs and hatched young are subject to lethal water temperatures (>65oF) in dry years.4 Low flows also contribute to starvation, predation, and reduced downstream transport.
  3. Take a holistic approach to life history and habitat research and monitoring. This should include a robust program of conventional mark–recapture to determine population size, population year–class composition, and mortality rate—in addition to advanced telemetry and habitat mapping methods. This approach should also include continuous monitoring of dissolved oxygen, the most critical environmental factor for oxyphilic sturgeons: they are broadly tolerant of wide ranges in temperature, salinity, and flow that are all much less critical factors for their population success. Comment: Water temperature, flow, entrainment, and predation are the key factors of poor recruitment (survival) in non-wet years. These factors are far more important for sturgeon in the long run than the harvest of several hundred adult sturgeon each year from a population of 25-50 thousand adults.

Fremont Weir Fish Passage Update

The Fremont Weir fish passage improvements at the upper end of the Yolo Bypass (see previous posts for details1) are mandated in the National Marine Fisheries Service’s Central Valley Project and State Water Project joint biological opinion (2009 OCAP BO). The OCAP BO that allows limited take of endangered salmon, steelhead, and sturgeon for the wide array of water projects’ features (i.e. dams and water diversions), provided various improvements are made.

So far, as of the beginning of 2016 there have been no improvements or fixes at Fremont Weir, just more planning and discussion. Meanwhile, CDFW rescued hundreds of stranded salmon in the upper Bypass this fall. There has been no rescue of sturgeon since the Fremont Weir and Tisdale Weir rescue efforts in April 2011, when 24 endangered Green Sturgeon were rescued and radio tagged (21 eventually returned to the Pacific Ocean after migrating to spawning grounds in the upper Sacramento River2). Because of the drought, there have been no river flood flows over Fremont Weir into the Bypass since the April 2011 event. (Overflow of the Tisdale Weir into the Sutter Bypass did occur in Dec 2012 and Jan 2013.). However, salmon and sturgeon continue to be attracted to the Bypass by flows from local sources and to become stranded at the upper end of the Bypass.

“Fixes” under consideration for Fremont Weir include changes that would allow the Sacramento River to flood parts of the bypass at lower flows. The amount of water that might be diverted to the Yolo Bypass from the Sacramento River through prospective changes to the weir ranges from several hundred cfs to 6000 cfs. The larger end of the range of flows would be designed to provide for Bypass rearing of young salmon that would pass along with the water from the river to the Bypass. There is little doubt that young salmon do well in the over 40 miles of floodway habitats of the Bypass. The Delta also benefits from flow through the Bypass because of enhanced biological productivity.

It will take years to plan and implement such large sized enhancements in the Bypass. But an immediate solution to the adult salmon and sturgeon passage problem at Fremont Weir is not that complicated or contingent on other actions. OCAP BO Action 1.7– a Fremont Weir Ladder Project (reproduced below, with a deadline that is 5 years past) – should be implemented now


 

OCAP 

Action I.7. Reduce Migratory Delays and Loss of Salmon, Steelhead, and Sturgeon at Fremont Weir and Other Structures in the Yolo Bypass

Objective: Reduce migratory delays and loss of adult and juvenile winter-run, spring-run, CV steelhead and Southern DPS of green sturgeon at Fremont Weir and other structures in the Yolo Bypass.

Description of Action: By December 31, 2011, as part of the plan described in Action I.6.1, Reclamation and/or DWR shall submit a plan to NMFS to provide for high quality, reliable migratory passage for Sacramento Basin adult and juvenile anadromous fishes through the Yolo Bypass. By June 30, 2012, Reclamation and/or DWR shall obtain NMFS concurrence and, to the maximum extent of their authorities, and in cooperation with other agencies and funding sources, begin implementation of the plan, including any physical modifications. By September 30, 2009, Reclamation shall request in writing that the Corps take necessary steps to alter Fremont Weir and/or any other facilities or operations requirements of the Sacramento River Flood Control Project or Yolo Bypass facility in order to provide fish passage and shall offer to enter into a Memorandum of Understanding, interagency agreement, or other similar mechanism, to provide technical assistance and funding for the necessary work. By June 30, 2010, Reclamation shall provide a written report to NMFS on the status of its efforts to complete this action, in cooperation with the Corps, including milestones and timelines to complete passage improvements.

Rationale: The Yolo Bypass and Fremont Weir has been a documented source of migratory delay to, and loss of, adult winter-run, spring-run, CV steelhead and Southern DPS of green sturgeon. The existing fish passage structure is inadequate to allow normal passage at most operational levels of the Sacramento River. The project agencies must work with the Corps, which owns and operates Fremont Weir, to achieve improvements for fish. Other structures within the Yolo Bypass, such as the toe drain, Lisbon Weir, and irrigation dams in the northern end of the Tule Canal, also can impede migration of adult anadromous fish.

Additionally, stranding of juvenile salmonids and sturgeon has been reported in the Yolo Bypass in scoured areas behind the weir and in other areas. This action offsets unavoidable project effects on adult migration and minimizes the direct losses from flood management activities associated with operations.


 

Photo of Fremont Weir Fish Ladder

Fremont Weir Fish Ladder (Looking North towards flooded Sacramento River)

Fremont Weir Ladder Project

Fremont Weir Fish Ladder Replacement. “The existing Fremont Weir Denil fish ladder will be removed and replaced with new salmonid passage facilities designed to allow for the effective passage of adult salmonids and sturgeon from the Yolo Bypass past the Fremont Weir and into the Sacramento River when the river overtops the weir. Specific design criteria of the ladder have not yet been determined. This facility will incorporate monitoring technologies to allow for collection of information to evaluate its efficacy at passing adult fishes.” From Draft BDCP CM 2 Yolo Bypass Fishery Enhancement, October 5, 2010.

The 2010 proposal cited above would have been insufficient, because any prospective fish passage improvement would have been limited to conditions when the weir would overtop (river elevation 33.5’). Present planning efforts are looking at options that provide flows and passage at river elevations from 14’ to 22’. The deeper the project goes, the more often passage can be provided. Elevation 14’ is likely the limit: otherwise water could flow in reverse (from the Bypass through the weir to the river). A 14’ elevation would allow passage in most dry years when such action is most needed. But even in a wet year overflow like 2011, a 14’ elevation would relieve Bypass stranding potential by increasing the passage window by 20%, and by offering better through-opening conditions for passage.

Options:

  1. Dig and line channel to river from existing 30-ft ele down to 14/15-ft ele.
  2. Rebuild existing 4-ft-wide, 4-ft-deep ladder from existing 33-ft top ele and 28-30 ft ele bottom, to 8-20 ft wide, 8-15 ft deep slot or open box-culvert weir.
  3. Dig and line 10-ft-wide channel from weir apron down into Bypass to large pond about 50 yards distance. Bottom of channel should be about 14-ft ele through weir apron (it is presently at 28-ft ele). Bypass pond and Tule Canal downstream of weir (top center in photo below) is about 15-20-ft surface ele, thus channel to pond may have to incorporate step-pools. Channel enhancements may also be required between pond and Tule Canal.
  4. The pond should be filled so fish do not become stranded
Photo on wier

Photo above looking South from top of weir toward target pond

Photo of fish ladder

Ladder in center of photo. Bypass and apron to the left; River to the right (100 Yds).

  1. http://calsport.org/fisheriesblog/?p=497; http://calsport.org/fisheriesblog/?p=421
  2. Thomas, M. J., and others. 2013.  Stranding of Spawning Run Green Sturgeon in the Sacramento River: Post-Rescue Movements and Potential Population-Level Effects.  North American Journal of Fisheries Management 33:287–297.  ISSN: 0275-5947 print / 1548-8675 online. DOI: 10.1080/02755947.2012.75820.

Sturgeon and the Drought

The State Water Board’s weakening of the water temperature standards in the Sacramento River below Shasta at the request of Reclamation and concurrence by NMFS this late spring and early summer has likely led to excessive take during this spawning season of listed Green Sturgeon, increasing their risk of their extinction. Lower flows and higher temperatures in the Sacramento River’s Green Sturgeon spawning reach from Anderson (RM 280) to Hamilton City (RM 200) has likely resulted in a substantial mortality of eggs and larval Green Sturgeon, as well as White Sturgeon, during and following their May-June spawning season.

Water temperatures below Red Bluff (RM 240) exceeded the upper thermal optimum for Green Sturgeon embryos (17-18°C, 62-65°F1) from late spring to early summer 2015 (Figure 1), but rarely in 2012, the first year of the present drought (Figure 2), when standards were not weakened. Water temperatures exceeded 62°F nearly to Anderson at times this summer (Balls Ferry and Jelly’s Ferry). Approximately half the spawning reach has been severely degraded by warm water from weakened standards (Figure 3). Lower flows and higher water temperatures have likely led to earlier spawning and more concentrated spawning in the upper end of the spawning reach. The river below Hamilton City, where eggs and fry drift and many young rear, is degraded with high water temperature even above 100% lethal levels (23°C, 73°°F) at Wilkins Slough (RM 120) (Figure 4). In 2012, when standards were not weakened, conditions at Wilkins Slough were much better and near optimum (Figure 5). However, even in 2012 (the first year of the present drought cycle) Green Sturgeon tended to spawn further upstream in the spawning reach than in previous years2 because of lower river flows and/or higher water temperatures.

What applies to Green Sturgeon also applies to the non-listed White Sturgeon, whose spawning and rearing requirements, timing, and locations are similar to those of the Green Sturgeon3. Concerns for the White Sturgeon are ever increasing4. The risks extend to adult White Sturgeon, which have undergone a die-off in the Columbia River under similar circumstances5.

Figure 1

Figure 1. Water temperatures at Red Bluff on Sacramento River late spring and early summer 2015. (Source: CDEC)

figure 2

Figure 2. Water temperatures at Red Bluff on Sacramento River late spring and early summer 2012. (Source: CDEC)

Figure 3

Figure 3. Green Sturgeon spawning reach in the Sacramento River (green highlight). Reach degraded by high water temperature in 2015 (red highlight).

Figure 4

Figure 4. Water temperatures at Wilkins Slough (RM 120) on Sacramento River late spring and early summer 2015. (Source: USGS)

Figure 5

Figure 5. Water temperatures at Wilkins Slough (RM 120) on Sacramento River late spring and early summer 2012. (Source: USGS)

  1. “Water temperature for spawning and egg incubation is near optimal (15oC/ 59oF)) from RBDD upriver during the spawning season. Below RBDD, water quality, in terms of water temperature, gradually degrades and eventually exceeds the thermal tolerance level for egg incubation, when egg hatching success decreases and malformations in embryos increase above 17 oC/62 oF, at Hamilton City”. (NMFS OCAP Biological Opinion p276)
  2. William R. Poytress, Joshua J. Gruber, Joel P. Van Eenennaam & Mark Gard (2015) Spatial and Temporal Distribution of Spawning Events and Habitat Characteristics of Sacramento River Green Sturgeon, Transactions of the American Fisheries Society, 144:6, 1129-1142, DOI: 10.1080/00028487.2015.1069213
  3. White Sturgeon generally spawn lower in the river than Green Sturgeon.
  4. http://www.scout.com/outdoors/fish-sniffer/story/1563429-ca-dfw-considers-slashing-sturgeon-fishing
    https://cdfgnews.wordpress.com/2015/08/11/responsible-angling-practices-help-conserve-sturgeon-populations/
  5. http://www.cbbulletin.com/434540.aspx

Knights Landing Outfall Gates New Screens – Only a Start

A SacBee article on October 22, 20151 describes the nearly completed Knights Landing Outfall Gates (KLOG or Outfall Gates) screening project on the Sacramento River: “local, state and federal officials are close to completing a $2.5 million project that will block an entrance wayward salmon use to get into the Colusa Basin Drain”. The operative word here is “an”, because the other entrance, and by far the more important, is the Knights Landing Ridge Cut (KLRC or Ridge Cut) outlet into the upper Yolo Bypass (Map 1).

Upstream-migrating Winter Run Chinook Salmon bound for spawning grounds below Shasta Dam near Redding in the Sacramento River can be attracted into irrigation and stormwater drainage system outfalls and eventually lost. The two largest outfalls are the Yolo and Sutter bypasses (see my previous blog on the bypass attraction – http://calsport.org/fisheriesblog/?p=421 ). Of lesser importance are a series of agricultural outfalls from low-lying basins adjacent to the Sacramento River. Chief among these are the Knights Landing Outfall Gates, which drain the Colusa Basin on the west side of the Sacramento River Valley.

The new screens on Outfall Gates will ensure that no salmon leave the river for the basin through the gates. But that is not the big problem. The Colusa Basin Drain (CBD or Drain) is also a stormwater drain that can flow mightily in winter storms even in drought years such as 2013-2015 (Charts 1 and 2). When stormwater-driven high flows in the Drain occur, the Outfall Gates’ outlet is usually closed because the river is higher than the gates during storm runoff. Under these high flows, water in the Drain is forced down the Knights Landing Ridge Cut into the upper Yolo Bypass (see Map 1).

Storm runoff that passes through the Ridge Cut into the Yolo Bypass attracts many salmon, steelhead, and sturgeon into the Drain and to their eventual demise in the dead-end Colusa Basin. Storm flow to the Yolo Bypass reaches 4000-6000 cfs in drought years, while non-storm flows through the Outfall Gates are usually only several hundred cfs (Charts 1 and 2). Flows leaving the Yolo Bypass and entering the Delta at Cache Slough (Map 2) attract many salmon, steelhead, and sturgeon moving through the Delta. During floods, the Sacramento River spills into the Yolo Bypass, adding even more attraction flows through Cache Slough. With limited passage options past the Fremont Weir at the upper end of the Yolo Bypass (Map 1 or 2), many of fish moving up the Yolo Bypass are attracted to and migrate up the Ridge Cut.

In short, the Knights Landing Ridge Cut outlet also needs to be blocked to keep fish from migrating into the Colusa Basin and being lost. The threat is serious not only to Winter Run Chinook, but also to Fall Run, Late Fall Run and Spring Run Chinook, as well as Steelhead, Green Sturgeon and White Sturgeon. Fish passage facilities at Fremont Weir are also needed so that adult fish that migrate up the Yolo Bypass are not stranded in the Bypass.

Map 1

Map 1. Location of Knights Landing Outfall Gates (KLOG) on Sacramento River and Knights Landing Ridge Cut (KLRC) outlet in the Yolo Bypass near Knights Landing, CA. Red arrows point out routes taken by salmon into the Colusa Basin.

Chart 1

Chart 1. Flow in the Colusa Basin Drain Nov 2013 through May 2014. Red line depicts flow when KLOG were closed due to high Sacramento River stage. (At flows above about 900 cfs in the CBD the KLOG were closed and flow diverted to Yolo Bypass via KLRC.)

Chart 2

Chart 2. Flow in the Colusa Basin Drain Nov 2014 through May 2015. Red line depicts flow when KLOG were closed due to high Sacramento River stage.

Map 2

Map 2. Route salmon take from the Delta via Cache Slough up the Yolo Bypass when attraction flows are input from either the Knights Landing Ridge Cut or the Fremont Weir.

Loss of Salmon in the Sacramento River Floodplain

The loss of juvenile and adult salmon in the Sacramento River floodplain has been a problem for many decades. The problem is largely the result of the construction of dams, agricultural drains, and flood control systems. The problem is acute, and although well documented and quite obvious, little has been done to resolve it. The fixes are not cheap and no one wants to get stuck paying for them. In addition, potential fixes have been hoarded as potential mitigations for large public works projects like the Bay Delta Conservation Plan and its associated Delta Tunnels.

The Problem

Figure 1 is a map of the Sacramento Valley with arrows showing some of the major locations of the problem. Much of the problem is the result of limitation or blockage of fish passage; another major factor is stranding. Adult salmon, sturgeon, and steelhead migrating up the Sacramento River become attracted to the high volumes of Sacramento water exiting the Sutter and Yolo Bypasses (adult fish movement is shown by red arrows in Figure 1), only to be blocked at the high weirs at the upstream end of the bypasses (Figures 2 and 3). Even modest bypass flows in drought years can cause attraction and subsequent mortality (Figure 4).

Young salmon emigrating downstream from upriver spawning grounds pass into the bypasses (green arrows in Figure 1) and adjacent basins in huge numbers. Many become stranded and lost when flows and water levels decline when weirs quit spilling (the river can drop ten feet overnight and quickly cease spilling into bypasses).

Landowners Seek Solution

In one of the areas, the Yolo Bypass, local landowners and stakeholders are seeking a solution. They are addressing three critical issues:

  1. Blockage of upstream migrating fish behind the Fremont Weir at the head of the Bypass.
  2. Blocked fish migrating to their deaths into the Colusa Basin from the Bypass via the Knights Landing Ridge Cut1. Adult migrants are also attracted directly to Colusa Basin Drain outlet even when Fremont Weir does not spill.
  3. Increasing survival of young salmon spilled into the Yolo Bypass by augmenting flows and improving habitats and habitat connectivity.

The first issue often occurs each time the weir spills at flood stage (generally one in three years, although it has not spilled significantly since 2006 because of drought). The bandaid treatment is shown in Figure 2. Stakeholders have advocated a short-term solution for passing fish via a “small notch” in the Fremont Weir to pass fish over the weir into the river; however, long-term agency plans call for a more contentious “large notch” in the weir.

The second issue requires the opposite solution, placing a fish-blocking weir at the outlet of the Knights Landing Ridge Cut to stop adult salmon, sturgeon, and steelhead from migrating upstream into the Colusa Basin. Landowners are working with the California Department of Water Resources and Reclamation toward building such a weir. For now the bandaid is a fish trap and fish rescues such as that shown in Figure 2.

The third issue can be resolved by engineering the bypass floodplain to provide better habitat and connectivity for the salmon including high and longer-sustained flows from the Fremont Weir (via a “notch”). Local landowners have developed an array of actions to provide habitat and connectivity.

In my experience, placing leadership and responsibility for developing and implementing actions in the hands of local stakeholders has worked best to help save fish. “Locals” can be surprisingly adept at coming up with viable solutions to fisheries problems.

Map of Sacramento Valley showing levees and flood control system weirs and bypasses

Figure 1. Map of Sacramento Valley showing levees and flood control system weirs and bypasses. Gray area agricultural basins are generally below the elevation of the river and bypasses. The flood control system was initially designed to convey flood water and historic foothill mining debris through the Valley. Adult salmon (as well as sturgeon and steelhead) are attracted to the high flows entering, passing through, and exiting the Sutter and Yolo Bypasses (such adult migration is shown with red arrows). Many cannot successfully complete their passage either becoming lost or blocked at the upstream end by weirs (located at the blunt end of the green arrows). Many young salmon become stranded in the basins and bypasses after entering in spill over weirs during floods. (Map source: http://baydeltaconservationplan.com/Libraries/Dynamic_Document_Library/Fact_Sheet_-_Sac_River_System_Weirs_and_Relief_Structures.sflb.ashx )

Figure 2. Sturgeon being rescued below a Sacramento River bypass weir

Figure 2. Sturgeon being rescued below a Sacramento River bypass weir

Moulton Weir 1997

High storm flows in late December 2014 into the Yolo Bypass from the Knights Landing Ridge Cut attracted many salmon to the northern end of the Bypass

Figure 4. High storm flows in late December 2014 into the Yolo Bypass from the Knights Landing Ridge Cut attracted many salmon to the northern end of the Bypass. When storm flows receded after several days, hundreds of adult salmon became stranded in winter-fallow fields that had been flooded. Many more salmon likely passed successfully into the Colusa Basin drain system only to find no route to spawning grounds in the upper Valley.