More on Mark-Selective Steelhead Fisheries

Don Beyer and many others are concerned with the recent movement to limit hatchery production and mark-selective fisheries of Steelhead in the Puget Sound and Columbia River regions in Washington State. At the center of the debate have been proposals to eliminate hatchery programs on rivers with wild Steelhead.1 Typically, WA Steelhead fisheries focused on winter hatchery fish (adipose fin clipped), with catch-and-release of wild non-clipped fish in winter and spring. In recent years, popular mark-selective and wild catch-and-release fisheries have been shut down on rivers in WA with seemingly healthy populations of wild Steelhead.2 Will NMFS extend these strategies to California?
Steelhead Catch Photo

Recent catch of a hatchery Steelhead in the lower American River in Sacramento. (Photo by T. Cannon)

Marking of Hatchery Fish for Selective Fisheries

by Don Beyer

Salmon and steelhead hatcheries have been in existence for decades along the Pacific coast. The purpose of these hatcheries has been to maintain or improve fisheries for sport, commercial, and tribal interests. They are also a key factor in providing mitigation for habitat losses due to water resource projects such as dams, urbanization, land use alterations, and pollution which have negatively impacted wild fish populations.

Hatchery fish are utilized for food consumption by not only humans, but by marine mammals (e.g., Orcas, seals/sea lions, porpoise/dolphins), birds (bald eagles/ospreys/herons), and other fish (e.g., bull trout), many of which are protected under the Endangered Species Act (ESA), Marine Mammal Act, or other similar Federal acts. The sport fishing industry that has developed over decades around fish resulting from hatchery programs also has a very large economic impact involving millions of dollars.

As a result of the ESA and its efforts to protect non-hatchery raised salmon or steelhead, it was difficult for fishermen to distinguish between hatchery and non-hatchery fish and it appeared that harvest would need to be strictly curtailed or eliminated. To resolve this challenge, hatchery fish were required to be clearly “marked” so that they could be differentiated from non-hatchery fish. The most widely adopted approach has been to remove the adipose fin (a small non-functional fin near the tail of the fish) in juvenile fish before they leave the hatchery to migrate to the ocean. In this manner, if a fisherman caught a salmon or steelhead with an intact adipose fin, they were required to carefully release the fish (even if the season was open for that species). This approach (termed “selective fishery”) was to allow fishermen to continue fishing while protecting ESA-listed salmon or steelhead. Without this approach, the sport, commercial, and likely tribal fisheries would have ceased to exist. It took many years in all Pacific coast states, along with the efforts of many people, to get the selective fishery approved and implemented.

Other approaches are also being undertaken to minimize or eliminate interactions of ESA and non-ESA listed fish. For example, in the past, steelhead from Washington state hatcheries were released at the hatchery and often at other locations either upstream, downstream, or even other river systems. To minimize potential interactions with ESA-listed steelhead, this practice has been minimized to releases only at the hatchery. This takes advantage of the exceptional homing abilities of adult hatchery fish to return to their place of origin (i.e., the hatchery), thus reducing the interactions with non-hatchery fish.

Without the adipose-marking of fish, current fisheries would not be able to continue because fish protected under ESA could not be differentiated from hatchery fish. As such, a major food source for humans and other ecosystem components (e.g., those mentioned above) would cease to exist along with the loss of a major industry dependent on hatchery production. Without selective fishing, the only possibility for a return to a harvestable level of fish would be for ESA-listed species to recover to a level of sustainability that includes harvest. This is a long-term undertaking and may not be possible in some areas where the habitat would not sustain recovery. However, in some situations such as the Columbia River system, progress is being made through recovery of habitat, improvements in hydroelectric and hatchery programs, and harvest restrictions. On the latter, the selective fishery approach has allowed a very viable sport, commercial, and tribal harvest to continue.

Yuba River Fisheries Enhancement

Improving Yuba River Fisheries

The Yuba River (Figure 1), including the lower river below Englebright Dam and its three upper forks and two reservoirs, provides a substantial fisheries resource. But it could provide much more.

Overall, the Yuba has a long complicated story with a colorful history that goes back to the gold rush and hydraulic mining in the last two centuries. Nearly two decades ago the CALFED program took on the Yuba fisheries as a special case.1 Options in these management planning efforts have included building a hatchery, trucking salmon and steelhead above the dams, removing dams, providing better upstream passage at dams, raising young salmon in rice fields, and enhancing spawning and rearing habitat in the lower river below Englebright Dam. Last year the National Marine Fisheries Service published its Central Valley Recovery Plan for threatened and endangered salmon and steelhead that included actions for the Yuba River.2 As prescribed in the Recovery Plan, The Yuba Salmon Partnership Initiative recently came to an agreement to trap and haul salmon above New Bullards Bar Reservoir to the North Yuba.3 The US Army Corps of Engineers and Yuba County Water Agency have also teamed up to enhance fish habitat and passage, and recently asked for public input.4 Their responsibility stems from the dams, flood control, water supply, and hydroelectric production on the Yuba River.

Yuba River Map

Figure 1. Yuba River is a tributary of the Feather River in the Sacramento Valley north of Sacramento, California. The lower river flows about 25 miles from Englebright Dam to to its mouth on the Feather River. New Bullards Bar reservoir on the North Yuba completed in 1970 is one of the largest in California, with storage of 966,000 acre-feet.

Status of Fisheries

Lower Yuba Trout Fishery

The gem of the Yuba is its lower river “blue-ribbon” wild trout fishery that extends from Englebright Dam downstream to Daguerre Dam and below, a total of about 20 river miles. The trout here are predominantly wild, except for some stray Feather hatchery steelhead smolts that migrate up from the Feather River, and for wild and hatchery trout from upriver that pass downstream from the dams. The wild trout of the lower Yuba have their own distinct character, likely derived from mixed genetics including steelhead. They grow quickly due to year-round near-optimal water temperature and to abundant tailwater insects supplemented with salmon eggs and fry. Trout survive well in the reach between Englebright Dam and Daguerre Dam in part because striped bass and other predatory fish cannot ascend Daguerre’s ladders. They are also protected by strict sport fishing regulations that limit gear, harvest, and season.

Lower Yuba Steelhead Fishery

The lower Yuba steelhead fishery is very limited, made up of small numbers of Feather hatchery strays and a very few wild steelhead. It is much the same case as in the lower Sacramento River near Redding, where wild resident trout dominate the fishery. There is no steelhead stocking on the lower Yuba, although many Feather hatchery steelhead smolts migrate into the lower Yuba and take up residence.

Spring Run Chinook Salmon

The number of spring run Chinook is also small, and is made up mostly of stray Feather River hatchery fish. Small numbers of adult spring run spend the summer milling below Englebright dam waiting to spawn in early fall. The population suffers from the flawed “summer run” genetics of the Feather River hatchery program, lack of spawning habitat below Englebright, and competition and interbreeding with fall run in the lower Yuba.

Fall Run Chinook Salmon

Abundant some years and not in others, the fall run salmon follow the trends of the Feather hatchery fall run, mainly because they are mostly Feather hatchery strays or their offspring. Like other Central Valley fall run, production suffers severely in drier years when winter flows are low and unable to carry newly emerged fry to their nursery areas in the Delta and Bay. Habitat and survival is poor for fry that remain in the rivers because of a lack of backwater and floodplain habitat and woody in-stream cover. The Yuba, like the Sacramento and its other tributaries the Feather and American, and like the San Joaquin and its tributaries, suffers from winter-spring reservoir storage of most of the dry year runoff, leaving little flow to help young salmon emigrate or to provide floodplain rearing habitat.

Recommended Actions

I recommend the following actions to help improve the populations of the target fish species to protect them from extinction, but also to improve the dependent sport and commercial fisheries.

  1. Adult Spring Chinook should be captured at Daguerre Dam and trucked above the dams to spawn. Young thus produced should be captured and transported below Daguerre Dam in wetter years or trucked to Verona (mouth of Feather River) and barged to the Bay in drier years. Spring run should not be allowed to spawn in lower Yuba where they interbreed with fall run or have their redds destroyed by fall run spawners.
  2. Spawning and rearing habitats in the lower Yuba should be enhanced as proposed in the above-described programs. Of greatest need are woody cover in low flow channels and low flow spawning and rearing habitats such as alcoves, side channels, and connected oxbows.
  3. Winter-spring flows in the lower river should be enhanced when necessary to improve emigration of young salmon and steelhead in wet, normal, and below normal water years given sufficient reservoir inflows and storage supplies.
  4. In dry years, wild fall run salmon and steelhead young should be captured in winter and spring at Daguerre Dam and trucked to Verona and then barged to the Bay.
  5. A conservation hatchery should be considered for the lower Yuba to enhance the spring run salmon and steelhead populations. Alternatively, repurposing of a portion of the Feather River Fish Hatchery to achieve this enhancement should be considered The first order of business would be to develop appropriate genetic stocks; the second would be to increase production and contribute to sustainable fisheries.

These and other suggestions are also generally prescribed in the following blog post by Dr. Peter Moyle (UC Davis): http://www.ppic.org/main/blog_detail.asp?i=1890 .

Trap and Haul –a better Central Valley option

Last month, CalTrout’s blog had a post on a federal government program to trap-and-haul salmon and move them upstream of Shasta Reservoir.1 Earlier we also commented on trap-and-haul (http://calsport.org/fisheriesblog/?p=334). The National Marine Fisheries Service’s (NMFS) Recovery Plan for Central Valley Salmon and Steelhead prescribes trap-and-haul, as does their biological opinion for operation of state and federal Central Valley water projects.

Transporting adult salmon above dams and the offspring back below the dams is an expensive and difficult task. No one loves trap-and-haul, but NMFS considers it necessary to ensure that endangered salmon and steelhead do not go extinct. The prescription comes out of frustration that the populations are declining below the dams. Given the choice of extinction or doing something that no one is thrilled with, NMFS has chosen a set of actions in the latter category. The feds have again begun raising Winter Run Chinook in the fish zoo at Livingston Stone Hatchery to ensure there is some genetically pure stock available in the future. Having a wild stock above Shasta in the McCloud River seems a wiser option, given that those fish would be wild even if they spend some time in a truck. It is a further hedge against conditions like the past two years when the Bureau of Reclamation failed to keep their promise to protect the Winter Run downstream of Shasta.

NMFS has also prescribed trap-and-haul to pass Spring Run Chinook and Steelhead around Shasta Reservoir and other Central Valley dams. Stakeholders on the Yuba are developing a plan to carry out the prescription.

In a second blog post, CalTrout recently asked: “Will winter run go the way of the bull trout?”2 Most assuredly, trap-and-haul can help maintain populations while we get our act together below the dams. It’s a better option than a zoo.

Knights Landing Outfall Gates New Screens – Only a Start

A SacBee article on October 22, 20151 describes the nearly completed Knights Landing Outfall Gates (KLOG or Outfall Gates) screening project on the Sacramento River: “local, state and federal officials are close to completing a $2.5 million project that will block an entrance wayward salmon use to get into the Colusa Basin Drain”. The operative word here is “an”, because the other entrance, and by far the more important, is the Knights Landing Ridge Cut (KLRC or Ridge Cut) outlet into the upper Yolo Bypass (Map 1).

Upstream-migrating Winter Run Chinook Salmon bound for spawning grounds below Shasta Dam near Redding in the Sacramento River can be attracted into irrigation and stormwater drainage system outfalls and eventually lost. The two largest outfalls are the Yolo and Sutter bypasses (see my previous blog on the bypass attraction – http://calsport.org/fisheriesblog/?p=421 ). Of lesser importance are a series of agricultural outfalls from low-lying basins adjacent to the Sacramento River. Chief among these are the Knights Landing Outfall Gates, which drain the Colusa Basin on the west side of the Sacramento River Valley.

The new screens on Outfall Gates will ensure that no salmon leave the river for the basin through the gates. But that is not the big problem. The Colusa Basin Drain (CBD or Drain) is also a stormwater drain that can flow mightily in winter storms even in drought years such as 2013-2015 (Charts 1 and 2). When stormwater-driven high flows in the Drain occur, the Outfall Gates’ outlet is usually closed because the river is higher than the gates during storm runoff. Under these high flows, water in the Drain is forced down the Knights Landing Ridge Cut into the upper Yolo Bypass (see Map 1).

Storm runoff that passes through the Ridge Cut into the Yolo Bypass attracts many salmon, steelhead, and sturgeon into the Drain and to their eventual demise in the dead-end Colusa Basin. Storm flow to the Yolo Bypass reaches 4000-6000 cfs in drought years, while non-storm flows through the Outfall Gates are usually only several hundred cfs (Charts 1 and 2). Flows leaving the Yolo Bypass and entering the Delta at Cache Slough (Map 2) attract many salmon, steelhead, and sturgeon moving through the Delta. During floods, the Sacramento River spills into the Yolo Bypass, adding even more attraction flows through Cache Slough. With limited passage options past the Fremont Weir at the upper end of the Yolo Bypass (Map 1 or 2), many of fish moving up the Yolo Bypass are attracted to and migrate up the Ridge Cut.

In short, the Knights Landing Ridge Cut outlet also needs to be blocked to keep fish from migrating into the Colusa Basin and being lost. The threat is serious not only to Winter Run Chinook, but also to Fall Run, Late Fall Run and Spring Run Chinook, as well as Steelhead, Green Sturgeon and White Sturgeon. Fish passage facilities at Fremont Weir are also needed so that adult fish that migrate up the Yolo Bypass are not stranded in the Bypass.

Map 1

Map 1. Location of Knights Landing Outfall Gates (KLOG) on Sacramento River and Knights Landing Ridge Cut (KLRC) outlet in the Yolo Bypass near Knights Landing, CA. Red arrows point out routes taken by salmon into the Colusa Basin.

Chart 1

Chart 1. Flow in the Colusa Basin Drain Nov 2013 through May 2014. Red line depicts flow when KLOG were closed due to high Sacramento River stage. (At flows above about 900 cfs in the CBD the KLOG were closed and flow diverted to Yolo Bypass via KLRC.)

Chart 2

Chart 2. Flow in the Colusa Basin Drain Nov 2014 through May 2015. Red line depicts flow when KLOG were closed due to high Sacramento River stage.

Map 2

Map 2. Route salmon take from the Delta via Cache Slough up the Yolo Bypass when attraction flows are input from either the Knights Landing Ridge Cut or the Fremont Weir.

Loss of Salmon in the Sacramento River Floodplain

The loss of juvenile and adult salmon in the Sacramento River floodplain has been a problem for many decades. The problem is largely the result of the construction of dams, agricultural drains, and flood control systems. The problem is acute, and although well documented and quite obvious, little has been done to resolve it. The fixes are not cheap and no one wants to get stuck paying for them. In addition, potential fixes have been hoarded as potential mitigations for large public works projects like the Bay Delta Conservation Plan and its associated Delta Tunnels.

The Problem

Figure 1 is a map of the Sacramento Valley with arrows showing some of the major locations of the problem. Much of the problem is the result of limitation or blockage of fish passage; another major factor is stranding. Adult salmon, sturgeon, and steelhead migrating up the Sacramento River become attracted to the high volumes of Sacramento water exiting the Sutter and Yolo Bypasses (adult fish movement is shown by red arrows in Figure 1), only to be blocked at the high weirs at the upstream end of the bypasses (Figures 2 and 3). Even modest bypass flows in drought years can cause attraction and subsequent mortality (Figure 4).

Young salmon emigrating downstream from upriver spawning grounds pass into the bypasses (green arrows in Figure 1) and adjacent basins in huge numbers. Many become stranded and lost when flows and water levels decline when weirs quit spilling (the river can drop ten feet overnight and quickly cease spilling into bypasses).

Landowners Seek Solution

In one of the areas, the Yolo Bypass, local landowners and stakeholders are seeking a solution. They are addressing three critical issues:

  1. Blockage of upstream migrating fish behind the Fremont Weir at the head of the Bypass.
  2. Blocked fish migrating to their deaths into the Colusa Basin from the Bypass via the Knights Landing Ridge Cut1. Adult migrants are also attracted directly to Colusa Basin Drain outlet even when Fremont Weir does not spill.
  3. Increasing survival of young salmon spilled into the Yolo Bypass by augmenting flows and improving habitats and habitat connectivity.

The first issue often occurs each time the weir spills at flood stage (generally one in three years, although it has not spilled significantly since 2006 because of drought). The bandaid treatment is shown in Figure 2. Stakeholders have advocated a short-term solution for passing fish via a “small notch” in the Fremont Weir to pass fish over the weir into the river; however, long-term agency plans call for a more contentious “large notch” in the weir.

The second issue requires the opposite solution, placing a fish-blocking weir at the outlet of the Knights Landing Ridge Cut to stop adult salmon, sturgeon, and steelhead from migrating upstream into the Colusa Basin. Landowners are working with the California Department of Water Resources and Reclamation toward building such a weir. For now the bandaid is a fish trap and fish rescues such as that shown in Figure 2.

The third issue can be resolved by engineering the bypass floodplain to provide better habitat and connectivity for the salmon including high and longer-sustained flows from the Fremont Weir (via a “notch”). Local landowners have developed an array of actions to provide habitat and connectivity.

In my experience, placing leadership and responsibility for developing and implementing actions in the hands of local stakeholders has worked best to help save fish. “Locals” can be surprisingly adept at coming up with viable solutions to fisheries problems.

Map of Sacramento Valley showing levees and flood control system weirs and bypasses

Figure 1. Map of Sacramento Valley showing levees and flood control system weirs and bypasses. Gray area agricultural basins are generally below the elevation of the river and bypasses. The flood control system was initially designed to convey flood water and historic foothill mining debris through the Valley. Adult salmon (as well as sturgeon and steelhead) are attracted to the high flows entering, passing through, and exiting the Sutter and Yolo Bypasses (such adult migration is shown with red arrows). Many cannot successfully complete their passage either becoming lost or blocked at the upstream end by weirs (located at the blunt end of the green arrows). Many young salmon become stranded in the basins and bypasses after entering in spill over weirs during floods. (Map source: http://baydeltaconservationplan.com/Libraries/Dynamic_Document_Library/Fact_Sheet_-_Sac_River_System_Weirs_and_Relief_Structures.sflb.ashx )

Figure 2. Sturgeon being rescued below a Sacramento River bypass weir

Figure 2. Sturgeon being rescued below a Sacramento River bypass weir

Moulton Weir 1997

High storm flows in late December 2014 into the Yolo Bypass from the Knights Landing Ridge Cut attracted many salmon to the northern end of the Bypass

Figure 4. High storm flows in late December 2014 into the Yolo Bypass from the Knights Landing Ridge Cut attracted many salmon to the northern end of the Bypass. When storm flows receded after several days, hundreds of adult salmon became stranded in winter-fallow fields that had been flooded. Many more salmon likely passed successfully into the Colusa Basin drain system only to find no route to spawning grounds in the upper Valley.