PG&E Withdraws License Application on Butte Creek: Future of Spring-Run Salmon Uncertain

By Chris Shutes (CSPA) and Dave Steindorf (American Whitewater)

In a surprise move, PG&E announced on February 2, 2017 that it was withdrawing its application to relicense the DeSabla – Centerville Hydroelectric Project on Butte Creek and the West Branch Feather River.  The reach of Butte Creek affected by the Project is home to the only remaining viable population of spring-run Chinook salmon in California’s Central Valley.

Spring-run salmon in Butte Creek have seen a resurgence over the last twenty years.  A substantial part of this was due to investments and improvements downstream of the Project. In addition, since 2003, PG&E and state and federal resource agencies have greatly improved the management of the Project for the fish.

From 2004 to 2009, PG&E went through a formal relicensing process with the Federal Energy Regulatory Commission (FERC) to relicense the Project.  In 2016, the State Water Board issued a Water Quality Certification needed for a new license.  A new license from FERC was widely expected in 2017.

In a DeSabla – Centerville fact sheet and map that PG&E distributed with its announcement, PG&E describes the project as follows:

The Project diverts a portion of the natural flow of water from Butte Creek and West Branch of the Feather River (WBFR) into canals that carry the water for use in hydroelectric powerhouses. Once water is run through the powerhouses it is ultimately released to Butte Creek. During the summer, the natural flow of the WBFR is augmented by water releases from Round Valley and Philbrook reservoirs. Project diversions have provided additional flow to Butte Creek for more than 100 years. One of the beneficiaries of this additional flow has been the aquatic community in Butte Creek, including Central Valley spring-run Chinook salmon.

While it is true that water from the Project augmented flows below Centerville Powerhouse for 100 years, it is only since 1980 that the Project benefited fish in the eight miles of Butte Creek between DeSabla Powerhouse and Centerville (see map).  The 2016 Water Quality Certification requires all the Butte Creek water and the imported water to remain in Butte Creek once it exits DeSabla Powerhouse.

The DeSabla – Centerville Project facilities are built around infrastructure that dates to 1900 and in some cases before.  Commissioned in 1900, Centerville Powerhouse has been offline since 2011, and ran only partially for the five years previous to that.  To function at all, it would need a complete rebuild.  The estimated cost to rebuild was $39 Million in the mid-1990’s; it is almost certainly now double that, or more.  DeSabla Powerhouse, nine miles upstream of Centerville, is relatively modern and in good condition, but the small reservoir that feeds it allows water to heat up too much passing through.

In California’s modern energy market, the capability to regulate the grid gives hydropower its greatest value.  But unlike many other hydropower projects, powerhouses in the DeSabla – Centerville Project run at a constant rate, day and night, regardless of when power demand is high or low.  They also have no ability to help regulate the power grid, especially to respond to short-term changes in supply from intermittent renewable sources like wind and solar.

The real value of the Project is the water it imports from the West Branch Feather River to Butte Creek: value for the fish and value for the farms that use the water further downstream.  The fish can’t pay for this service; the farms have never been asked to pay and never have.

PG&E’s decision not to relicense the Project does not lead to a path that is simple.  In the next few months, moving into the next few years, PG&E will need to establish a stakeholder engagement process to help determine the Project’s long-term disposition.  PG&E will need to engage resource agencies, downstream water rights holders, interested NGO’s, and local residents.  The DeSabla – Centerville Project has been part of the community for over a century.  Its resource values are enormous.  The water that it supplies downstream is essential to the irrigation of thousands of acres of crops.

On September 19, 2015, PG&E bought an advertisement on the editorial page of the San Francisco Chronicle entitled:  “Of Bees, Birds and Chillin’ Chinook: All in a Sustainable Day at PG&E.”  Mr. Tony Earley, CEO of PG&E at the time, started the ad by extolling PG&E’s work to keep salmon in Butte Creek cool.  His major theme stated: “The days are long past when energy companies could afford to think of their mission as separate from conservation, sustainability and good management of our natural resources.  Our view must be for the long term.  That’s why we live our commitment to conservation through a number of programs.”

We look forward to the opportunity to help PG&E maintain this well-stated goal.

Longfin Smelt – January 2017 Larval Survey

In a recent post on the status of the state-listed longfin smelt, I remarked on the dire straits of the population in the San Francisco Bay Estuary.  I noted that the first measure of a population collapse would be the lack of population response in wet year 2017 as determined by the larval longfin smelt catch in the January 2017 Smelt Larval Survey.  The January 2017 survey results are now in and indicate very low catch (15) relative to the first eight years of the survey.  Additional larval surveys in February and March and the spring 20-mm Survey will likely confirm these results.  The low larval count reflects the lack of adult spawners in the population.  Most of the winter 2017 spawners came from the winter 2015 brood.  The question remains whether the population can rebound under such low recruitment of juveniles into the population and whether juvenile survival (recruit per spawner) can increase under 2017’s favorable wet year conditions.

Catch of longfin smelt in January Smelt Larval Survey 2009 to 2017. Data Source: http://www.dfg.ca.gov/delta/data/sls/CPUE_Map.asp .

Catch of longfin smelt in January Smelt Larval Survey 2009 to 2017. Data Source: http://www.dfg.ca.gov/delta/data/sls/CPUE_Map.asp .

More on Delta Smelt Tidal Surfing

The last post about risk to Delta smelt was on January 9. Adult smelt migrate into the Delta from the Bay in winter to spawn. They take advantage of the flood tide to move upstream. However, with flood flows as high as 100,000 cfs entering the north Delta from the Sacramento River, the Yolo Bypass, and Georgiana Slough in mid- to late January 2017, there are no flood tides to ride into the north Delta spawning areas.

The only option for the adult smelt is thus to ride the incoming tide up the San Joaquin River into the central and south Delta (Figure 1). South Delta export pumping is currently at 14,000 cfs, near maximum capacity, using four rarely used auxiliary pumps. This pumping increases the pull of the incoming tide, reducing the effect of the inflow from the San Joaquin, Calaveras, Mokelumne, and Cosumnes rivers. While Delta inflow from these rivers is relatively high (Figures 2-5), it does not offset the influence of the incoming tide as does the inflow from the Sacramento.

Net tidal flows in lower Old and Middle Rivers (OMR flows) remain at the allowed limit of -5000 cfs, consistent with the smelt Biological Opinion. Several adult Delta smelt were salvaged at the export facilities in mid-January. 1 This scenario is considered a “high risk” to Delta smelt by the Smelt Working Group, because of the continuing risk that the pumps will draw or attract adult smelt into the central Delta and subsequently into the south Delta.

Under lower San Joaquin River flows, the maximum allowed export pumping is 11,400 cfs. High San Joaquin River inflow allows exports of 14,000 cfs that do not generate OMR flows more negative than -5000 cfs. The theoretical benefit of high San Joaquin River flows is that it should keep flow into the central and south Delta moving westward. But a large portion of that inflow is diverted south into the Head of Old River toward the pumping plants (Figure 6).

Figure 1. Approximate flood tide flow in cubic feet per second in mid to late January 2016. Blue arrows represent high Sacramento River, San Joaquin River and Mokelumne River flows (during flood tides). Red arrows depict negative flows of incoming tides. Note the south Delta incoming tide of -20,000 cfs would be less if not for the 14,000 cfs export rate at the south Delta pumping plants.

Figure 1. Approximate flood tide flow in cubic feet per second in mid to late January 2017. Blue arrows represent high Sacramento River, San Joaquin River and Mokelumne River flows (during flood tides). Red arrows depict negative flows of incoming tides. Note the south Delta incoming tide of -20,000 cfs would be less if not for the 14,000 cfs export rate at the south Delta pumping plants.

Figure 2. San Joaquin River flow at Mossdale at the head of the Delta upstream of Stockton and the Head of Old River. Note that on Jan 6 when flow reached about 6,000 cfs, the tidal signal dissipated when flow overcame the tidal forces.

Figure 2. San Joaquin River flow at Mossdale at the head of the Delta upstream of Stockton and the Head of Old River. Note that on Jan 6 when flow reached about 6,000 cfs, the tidal signal dissipated when flow overcame the tidal forces.

Figure 3: Flow from the Calaveras River, upstream of the Delta. The Calaveras enters the Delta at Stockton.

Figure 3: Flow from the Calaveras River, upstream of the Delta. The Calaveras enters the Delta at Stockton.

Figure 4. Release from Camanche Dam to the Mokelumne River. CDEC does not show flow values for the Mokelumne at gages further downstream. The Mokelumne enters the Delta near Jersey Point.

Figure 4. Release from Camanche Dam to the Mokelumne River. CDEC does not show flow values for the Mokelumne at gages further downstream. The Mokelumne enters the Delta near Jersey Point.

Figure 5. Cosumnes River flow well upstream of the Delta. Much of the high flow peaks enters the river’s connected floodplain, roughly between Lodi and Elk Grove, and does not flow immediately to the Delta. Flows in the Cosumnes enter the Mokelumne before passing into the Delta

Figure 5. Cosumnes River flow well upstream of the Delta. Much of the high flow peaks enters the river’s connected floodplain, roughly between Lodi and Elk Grove, and does not flow immediately to the Delta. Flows in the Cosumnes enter the Mokelumne before passing into the Delta

 Figure 6. Flow entering the entrance to Old River from the San Joaquin River near Stockton.


Figure 6. Flow entering the entrance to Old River from the San Joaquin River near Stockton.

  1. https://www.usbr.gov/mp/cvo/vungvari/dsmeltsplitdly.pdf Note: website has changed to this new site.

More on Splittail Status

Recently, I summarized survey information from the Bay-Delta on Sacramento splittail that depicted a potentially grim picture of the future of this special status species.  In that post, I did not include trawl survey info from Suisun Marsh Fish Study collected annually by UC Davis (Figure 1), which indicates a core population of adult splittail still present in Suisun Marsh.  Other core populations exist in San Pablo Bay (Petaluma and Napa Rivers).  Peter Moyle and Teejay O’Rear (UC Davis, personal communications) believe the Marsh core population is sufficiently strong and resistant to extinction.

Looking at Figure 1, the Suisun Marsh population survived the 1987-1992 drought, building in numbers with strong recruitment (ages 0 and 1) in the wet years of 1995-2000.  Recruitment declined during the 2007-2009 drought, but there was strong recruitment in the wetter 2010 and 2011 water years.  Recruitment declined in the 2012-2014 drought years, but remains substantially higher than at the end of the 1987-1992 drought.  Teejay O’Rear states the population has remained strong through 2015 and 2016, with some recruitment in the wetter 2016, and likely strong recruitment in the spring of 2017, presuming it stays wet.

Figure 1. Catch-per-unit-effort of Sacramento splittail in Suisun Marsh 1980-2014 by age group. (Source: Teejay O’Rear, UC Davis)

Figure 1. Catch-per-unit-effort of Sacramento splittail in Suisun Marsh 1980-2014 by age group. (Source: Teejay O’Rear, UC Davis)

Winter-Run Chinook Salmon Status – End of 2016

The prognosis for winter-run Chinook salmon is not good following very poor survival of the 2014 and 2015 spawns in the Sacramento River below Shasta Dam.   The run had been recovering after the 2007-2009 drought (Figure 1).  However, year class production suffered in the 2012-2015 drought, culminating with the year class (spawn) failures in 2014 and 2015 (Figure 2) caused by egg stranding and high water temperatures.  Run size and juvenile production/survival estimates for 2016 are as yet incomplete, but production of juveniles as estimated from Red Bluff rotary screw trap data indicates some improvement over 2014-2015.1 The somewhat higher number of recruits produced in 2013 likely boosted the spawning run in 2016.

With water year 2017 starting out as a wet year with considerable flooding, conditions for the emigration of the 2016 year class should be optimal.  If wet conditions persist, spawning and rearing this spring and summer for the 2017 year class should also be optimal.  Planned release of 600,000 winter-run hatchery smolts in the coming weeks coincident to high Sacramento River flows also bodes well for the 2016 spawn and the future 2019 run.  However, the prognosis for the 2017 and 2018 runs remains in doubt because of the above-mentioned 2014 and 2015 year class failures.

Additional insight into the future is possible by taking a closer look at the population’s spawner-recruit relationship that I prepared for the past four decades (Figure 3).  Recruitment appears to be a function of both the number of spawners three years prior to any given year and environmental conditions between spawning and emigration in a given year.  (Other factors such as ocean conditions may also add to variability in the data.)  The recruits-per-spawner ratio is higher three years after wet years than three years after dry years.  The runs in 2017 and 2018 are likely to be severely depressed because of extremely poor 2014 and 2015 recruitment, and may possibly be as low as those produced after the 1987-91 drought (only 100-200 wild spawners).

For further reading on winter-run status see:

  1. http://deltacouncil.ca.gov/sites/default/files/2015/11/Vogel%20White%20Paper-%20Potential%20effects%20of%20CVP %20Ops%20on%20winter%20run%20Chinook%20egg%20incubation%202015.pdf
  2. http://www.westcoast.fisheries.noaa.gov/stories/2015/23_12232015_winter_chinook_math.html
  3. http://www.nmfs.noaa.gov/stories/2015/09/spotlight_chinook_salmon.html
  4. http://mavensnotebook.com/2015/12/15/conserving-chinook-salmon-at-the-southern-end-of-their-range-challenges-and-opportunities/
Figure 1. Winter-run Chinook salmon escapement (run size) into upper Sacramento River near Redding, CA from 1974-2015. (Data Source: http://www.dfg.ca.gov/fish/Resources/Chinook/CValleyAssessment.asp)

Figure 1. Winter-run Chinook salmon escapement (run size) into upper Sacramento River near Redding, CA from 1974-2015. (Data Source: http://www.dfg.ca.gov/fish/Resources/Chinook/CValleyAssessment.asp)

Figure 2. Survival of winter-run year classes below Shasta Dam from 1996-2015. The water temperature standard for the Sacramento River near Red Bluff was weakened during 2012-2015 drought. The severely weakened water quality standard in 2014 and 2015 led to poor survival and virtual loss of two year classes. (Source: http://www.waterboards.ca.gov/waterrights/water_issues/programs/drought/sacramento_river/docs/nmfs_yip_03182016_ppt.pdf)

Figure 2. Survival of winter-run year classes below Shasta Dam from 1996-2015. The water temperature standard for the Sacramento River near Red Bluff was weakened during 2012-2015 drought. The severely weakened water quality standard in 2014 and 2015 led to poor survival and virtual loss of two year classes. (Source: http://www.waterboards.ca.gov/waterrights/water_issues/programs/drought/sacramento_river/docs/nmfs_yip_03182016_ppt.pdf)

Figure 3. Winter-run Chinook spawners versus number of spawners three years later (recruits) for years 1974 through 2012. Selected wet year spawn dates shown in blue. Selected dry year spawn dates shown in red. (Data source: http://www.dfg.ca.gov/fish/Resources/Chinook/CValleyAssessment.asp)

Figure 3. Winter-run Chinook spawners versus number of spawners three years later (recruits) for years 1974 through 2012. Selected wet year spawn dates shown in blue. Selected dry year spawn dates shown in red.
(Data source: http://www.dfg.ca.gov/fish/Resources/Chinook/CValleyAssessment.asp)