Longfin Smelt – January 2017 Larval Survey

In a recent post on the status of the state-listed longfin smelt, I remarked on the dire straits of the population in the San Francisco Bay Estuary.  I noted that the first measure of a population collapse would be the lack of population response in wet year 2017 as determined by the larval longfin smelt catch in the January 2017 Smelt Larval Survey.  The January 2017 survey results are now in and indicate very low catch (15) relative to the first eight years of the survey.  Additional larval surveys in February and March and the spring 20-mm Survey will likely confirm these results.  The low larval count reflects the lack of adult spawners in the population.  Most of the winter 2017 spawners came from the winter 2015 brood.  The question remains whether the population can rebound under such low recruitment of juveniles into the population and whether juvenile survival (recruit per spawner) can increase under 2017’s favorable wet year conditions.

Catch of longfin smelt in January Smelt Larval Survey 2009 to 2017. Data Source: http://www.dfg.ca.gov/delta/data/sls/CPUE_Map.asp .

Catch of longfin smelt in January Smelt Larval Survey 2009 to 2017. Data Source: http://www.dfg.ca.gov/delta/data/sls/CPUE_Map.asp .

More on Delta Smelt Tidal Surfing

The last post about risk to Delta smelt was on January 9. Adult smelt migrate into the Delta from the Bay in winter to spawn. They take advantage of the flood tide to move upstream. However, with flood flows as high as 100,000 cfs entering the north Delta from the Sacramento River, the Yolo Bypass, and Georgiana Slough in mid- to late January 2017, there are no flood tides to ride into the north Delta spawning areas.

The only option for the adult smelt is thus to ride the incoming tide up the San Joaquin River into the central and south Delta (Figure 1). South Delta export pumping is currently at 14,000 cfs, near maximum capacity, using four rarely used auxiliary pumps. This pumping increases the pull of the incoming tide, reducing the effect of the inflow from the San Joaquin, Calaveras, Mokelumne, and Cosumnes rivers. While Delta inflow from these rivers is relatively high (Figures 2-5), it does not offset the influence of the incoming tide as does the inflow from the Sacramento.

Net tidal flows in lower Old and Middle Rivers (OMR flows) remain at the allowed limit of -5000 cfs, consistent with the smelt Biological Opinion. Several adult Delta smelt were salvaged at the export facilities in mid-January. 1 This scenario is considered a “high risk” to Delta smelt by the Smelt Working Group, because of the continuing risk that the pumps will draw or attract adult smelt into the central Delta and subsequently into the south Delta.

Under lower San Joaquin River flows, the maximum allowed export pumping is 11,400 cfs. High San Joaquin River inflow allows exports of 14,000 cfs that do not generate OMR flows more negative than -5000 cfs. The theoretical benefit of high San Joaquin River flows is that it should keep flow into the central and south Delta moving westward. But a large portion of that inflow is diverted south into the Head of Old River toward the pumping plants (Figure 6).

Figure 1. Approximate flood tide flow in cubic feet per second in mid to late January 2016. Blue arrows represent high Sacramento River, San Joaquin River and Mokelumne River flows (during flood tides). Red arrows depict negative flows of incoming tides. Note the south Delta incoming tide of -20,000 cfs would be less if not for the 14,000 cfs export rate at the south Delta pumping plants.

Figure 1. Approximate flood tide flow in cubic feet per second in mid to late January 2017. Blue arrows represent high Sacramento River, San Joaquin River and Mokelumne River flows (during flood tides). Red arrows depict negative flows of incoming tides. Note the south Delta incoming tide of -20,000 cfs would be less if not for the 14,000 cfs export rate at the south Delta pumping plants.

Figure 2. San Joaquin River flow at Mossdale at the head of the Delta upstream of Stockton and the Head of Old River. Note that on Jan 6 when flow reached about 6,000 cfs, the tidal signal dissipated when flow overcame the tidal forces.

Figure 2. San Joaquin River flow at Mossdale at the head of the Delta upstream of Stockton and the Head of Old River. Note that on Jan 6 when flow reached about 6,000 cfs, the tidal signal dissipated when flow overcame the tidal forces.

Figure 3: Flow from the Calaveras River, upstream of the Delta. The Calaveras enters the Delta at Stockton.

Figure 3: Flow from the Calaveras River, upstream of the Delta. The Calaveras enters the Delta at Stockton.

Figure 4. Release from Camanche Dam to the Mokelumne River. CDEC does not show flow values for the Mokelumne at gages further downstream. The Mokelumne enters the Delta near Jersey Point.

Figure 4. Release from Camanche Dam to the Mokelumne River. CDEC does not show flow values for the Mokelumne at gages further downstream. The Mokelumne enters the Delta near Jersey Point.

Figure 5. Cosumnes River flow well upstream of the Delta. Much of the high flow peaks enters the river’s connected floodplain, roughly between Lodi and Elk Grove, and does not flow immediately to the Delta. Flows in the Cosumnes enter the Mokelumne before passing into the Delta

Figure 5. Cosumnes River flow well upstream of the Delta. Much of the high flow peaks enters the river’s connected floodplain, roughly between Lodi and Elk Grove, and does not flow immediately to the Delta. Flows in the Cosumnes enter the Mokelumne before passing into the Delta

 Figure 6. Flow entering the entrance to Old River from the San Joaquin River near Stockton.


Figure 6. Flow entering the entrance to Old River from the San Joaquin River near Stockton.

  1. https://www.usbr.gov/mp/cvo/vungvari/dsmeltsplitdly.pdf Note: website has changed to this new site.

Delta Smelt at Risk – 1/5/17

The conflict continues between the Smelt Working Group (SWG) and the designated protector of the Delta smelt, the US Fish and Wildlife Service (FWS), over the amount of Delta exports allowed under existing Delta conditions.  The SWG recommends exports of no more than 2000 cfs, while the FWS continues to allow exports of 5000-6000 cfs (about half capacity), contrary to  the rules for Delta exports in its own smelt biological opinion.  The SWG notes that adult smelt continue to be captured in trawls in the central Delta (in surprising numbers), where smelt are at high risk of being drawn to the south Delta pumping plants or of eventually spawning in the central Delta where their offspring will be vulnerable to the export pumps.  The FWS is committed to allowing moderate exports as long as no adults are captured at the pumping plants’ fish salvage facilities (which would indicate it is too late to do anything other than to shut down the pumps). The National Marine Fisheries Service limits exports to the present 5000-6000 cfs level as of January 1, consistent with rules in its own biological opinion to protect juvenile salmon migrating down the Sacramento River.

Despite high Sacramento River inflows into the Delta of 30,000 to 50,000 cfs in the past two weeks, the smelt move from the Bay into the Delta by surfing the tides – that is, by moving upstream on incoming tides.  Flood tide velocities shown in Figure 1 indicate the adult smelt can readily “surf” into the Delta until they come up against the strong flows of the Sacramento River and its inflow channels that overwhelm the tidal flows.  In the south Delta, where limited flow has been coming down the San Joaquin River, export pumping plants accentuate the negative flood tide velocities and reduce ebb tide velocities.  This further increases the risk that adult smelt will be drawn to the south Delta.  Only time will tell if this risky FWS strategy protects the endangered Delta smelt during this potential comeback year.

Figure 1. Flood tide channel current velocities in feet/second in early January 2017. Arrows depict current direction on flood tides. Sacramento River net downstream flow was 30,000-50,000 cfs, which overwhelmed the flood tide. Light blue dots are flow gaging stations. Basemap source with gaging stations is DWR/CDEC.

Figure 1. Flood tide channel current velocities in feet/second in early January 2017. Arrows depict current direction on flood tides. Sacramento River net downstream flow was 30,000-50,000 cfs, which overwhelmed the flood tide. Light blue dots are flow gaging stations. Basemap source with gaging stations is DWR/CDEC.

Longfin Smelt Status – End of 2016

The longfin smelt population in the Bay-Delta reached a near record low index in 2016 (Figures 1 and 2).  The index was 7, slightly higher than the record low index of 4 in fall 2015.  There is a strong positive spawner (fall index two years prior) to recruitment (fall index) relationship (Figure 3).  Recruitment is strongly related to the number of spawners (likely the number of eggs spawned).  Recruits-per-spawner is also strongly influenced by wet or dry year conditions; in other words, first-year survival is higher in wetter years.  The poor fall 2015 and 2016 indices indicate that recruitment in 2017 and 2018 is likely to continue at record low levels.  Adult longfin (presumably some two-year-old spawners) were collected in the Bay trawl survey in December 2016.  Mid-January 2017 larval smelt surveys will be the first indication of recruitment into the population in 2017.  Water year 2017 has been a wet year to date, so some positive response in recruitment could potentially occur.

We will be keeping a close look at longfin recruitment in 2017, especially with new less stringent export restrictions mandated in recent legislation for the implementation of the two federal biological opinions that apply to Delta water project operations.  So far, no adult longfin have been collected in salvage at the south Delta export facilities.

sSouth Delta xEexport fish salvage facilities. Figure 1. Longfin smelt Fall Midwater Trawl indices 1967-2016. Source: CDFW.

Figure 1. Longfin smelt Fall Midwater Trawl indices 1967-2016. Source: CDFW.

Figure 2. Longfin smelt Fall Midwater Trawl indices 2000-2016. (Note: 2007=13; 2015=4; 2016=7) Source: CDFW.

Figure 2. Longfin smelt Fall Midwater Trawl indices 2000-2016. (Note: 2007=13; 2015=4; 2016=7) Source: CDFW.

Figure 3. Longfin smelt Fall Midwater Trawl Index (Recruits) vs two-year-prior index (Spawners), log10 scales. Wet years are blue labelled; dry years are red labelled.

Figure 3. Longfin smelt Fall Midwater Trawl Index (Recruits) vs two-year-prior index (Spawners), log10 scales. Wet years are blue labelled; dry years are red labelled.

Delta Smelt Status – End of 2016

The Delta smelt population in the Bay-Delta reached record or near-record low indices in 2016 (Figures 1-3), but ended the year with some promise of recovery (Figure 3). The December 2016 Kodiak Trawl Survey collected 214 Delta smelt in one of its nine trawls, and at least one Delta smelt was captured in each of the other eight trawls. Fall 2016 has been wet following a below normal water year 2016 (October 2015 – September 2016), which followed the 2012-2015 drought.

Some early insight into this apparent resurgence in the 2017 index can be gained by reviewing the relationship between the Fall Midwater Fall Index and the subsequent Winter Kodiak Trawl Index (Figure 4). There is a strong positive stock (previous fall index) to recruitment (winter index) relationship with three apparent outliers (2009, 2016, 2017). The poor fall 2015 and 2016 indices resulted in strongly contrasting winter recruitment (winter 2016 and 2017 indices). This likely reflects the benefits of a wet fall of 2016 to the 2017 index (Dec. 2016 survey), as compared to the dry fall of 2015 and subsequent poor 2016 index.

Water year 2015 was a critically dry year with extremely low flows. In contrast to 2015, critically dry year 2008 with its low fall index produced a strong winter 2009 index. The strong showing in the winter of 2009 may have been due to the extremely low December (2008) and January (2009) exports, combined with relatively high Delta outflow pulses, a pattern that rarely occurs after a critically dry year. We will be keeping a close look at how the apparent resurgence plays out in 2017, especially with new less stringent export restrictions mandated in recent legislation for the implementation of the two federal biological opinions that apply to Delta water project operations.

Figure 1. Summer Townet Index for Delta smelt 1969-2016.

Figure 1. Summer Townet Index for Delta smelt 1969-2016.

Figure 2. Fall Midwater Trawl Index for Delta smelt 1967-2016.

Figure 2. Fall Midwater Trawl Index for Delta smelt 1967-2016.

Figure 3. Winter Kodiak Trawl Index of Delta smelt 2002-2016, including December 2016 (Water Year 2017). December surveys were not conducted from 2002 to 2014.

Figure 3. Winter Kodiak Trawl Index of Delta smelt 2002-2016, including December 2016 (Water Year 2017). December surveys were not conducted from 2002 to 2014.

Figure 4.  Winter Kodiak Trawl Index versus previous fall Midwater Trawl Index of Delta smelt (log scales) 2002-2016.  The 2017 winter index is from Dec 2016 survey only and does not include Jan-Mar 2017 survey results as yet, thus it will likely be even higher than shown.

Figure 4. Winter Kodiak Trawl Index versus previous fall Midwater Trawl Index of Delta smelt (log scales) 2002-2016. The 2017 winter index is from Dec 2016 survey only and does not include Jan-Mar 2017 survey results as yet, thus it will likely be even higher than shown.