Welcome to the California Fisheries Blog

The California Sportfishing Protection Alliance is pleased to host the California Fisheries Blog. The focus will be on pelagic and anadromous fisheries. We will also cover environmental topics related to fisheries such as water supply, water quality, hatcheries, harvest, and habitats. Geographical coverage will be from the ocean to headwaters, including watersheds, streams, rivers, lakes, bays, ocean, and estuaries. Please note that posts on the blog represent the work and opinions of their authors, and do not necessarily reflect CSPA positions or policy.

“Epic” Salmon Fishing this Summer

Reports on the July 15 opener on the lower Sacramento fall-run salmon season are good.1 Reclamation and Sacramento River farmers have provided the flows needed to keep water temperatures down (Figure 1), allowing what appears to be a good run up the river from the Golden Gate. Openers in recent years have been poor because of low flows and high water temperatures, as well as low salmon numbers. Numbers are up, and water temperatures are down – good for fishing.

Figure 1. Higher flows in July have cooled the river despite many 100+ degree days. Source.

Sacramento Valley Salmon Resiliency Strategy

The Sacramento Valley Salmon Resiliency Strategy, June 2017, is the state’s strategy to improve the resilience of listed salmon to its activities, including water rights permits, State Water Project actions, CESA implementation, and CDFW management.

The document states on page 2:

Specific biological objectives have been identified for the Sacramento River that support the general need to increase survival and productivity of salmonids in the Sacramento Valley and to increase life history and genetic diversity. A summary of these biological objectives:

  1. Increase productivity by improving spawning and incubation conditions (habitat and water quality).
  2. Increase productivity by increasing juvenile salmonid survival.
  3. Support the full range of juvenile migration conditions to maintain life history diversity.
  4. Support the full range of adult migration conditions to maintain life history diversity.
  5. Maintain genetic integrity by limiting genetic influence from hatchery-produced fish and interbreeding of genetically or behaviorally distinct runs.

The Strategy is an aggressive approach to improving species viability and resiliency by implementing specific habitat restoration actions. (Emphasis and bullet numbering added)

The Strategy is defined as a “resiliency” strategy and not a recovery strategy for a reason. It does not include the actions necessary for recovery. It won’t fix the activities that caused the crisis in the first place. Over the past several decades, much restoration has occurred, yet fish populations continue to decline. Much stronger and more immediate management actions are needed to save the salmon populations. Habitat restoration alone will simply not suffice.

So what is missing?

  1. Spawning and incubation conditions – Missing are actions to maintain cold water temperatures and sufficient spawning flows in the reaches below all the major dams during spawning and incubation. A. Eliminate the water temperature increases caused when water from Whiskeytown Reservoir is routed through Spring Creek Powerhouse to Keswick Reservoir. B. Maintain cold water in the Sacramento River downstream to Red Bluff, not just to Redding. C. Eliminate dewatering of winter, spring, and fall–run salmon redds in the Sacramento River. D. For the American and Feather rivers, take actions similar to A through C that maintain cold water and eliminate redd stranding. E. Better manage reservoirs to place more emphasis on cold water pools and less on water deliveries.
  2. Juvenile salmon survival – Maintain adequate flows and water temperatures in rearing reaches to sustain growth and to reduce stress and predation.
  3. Full range of juvenile migration conditions – Maintain adequate flows and water temperatures in the lower rivers and the Delta throughout emigration seasons. Do not shave off early and late seasons.
  4. Adult migrations – Maintain adequate flows and water temperatures to assure adult survival, egg survival and gonad development during migration. Do not shave off early and late seasons.
  5. Genetic integrity – Move more toward conservation hatchery activities, reduce straying by barging smolts, implement natural floodplain rearing, mark all hatchery smolts, and introduce mark-selective recreational fisheries.

As for other planned actions like completing projects on Battle Creek and reintroducing salmon upstream of Central Valley rim reservoirs, let’s get on with it. If we keep the present snail’s pace, there is little hope for future salmon generations.

Would WaterFix Tunnel Intakes be Protective of North Delta Fish? You Judge!

The Department of Water Resources’ consultant on in the WaterFix tunnels hearing testified:

“But for those Smelts that are occurring in that area, the North Delta diversions will be designed to fish agency protective standards”… “That opening, based on analyses, would prevent entrainment of Smelts that are greater than about 21 to 22 millimeters.”1

“In the EIR/EIS, the only significant and unavoidable impact that we found was for Striped Bass and American Shad. This is because of entrainment of early life stages at the North Delta diversions. These are species that spawn upstream of the North Delta diversions, in large part…..2

For American Shad, studies suggest that many American Shad were upstream of the Delta and, therefore, when they’re coming down into the Delta, they would be sufficiently large to be screened by the North Delta diversions.”

Delta Smelt

Delta smelt spawn in the north Delta in late winter and early spring. Their juveniles occur through summer. Their young would be highly susceptible to entrainment throughout spring (Figure 1).

White Sturgeon

Sturgeon, both green and white, spawn above the Delta in the lower Sacramento River in early spring. Their larvae and early juvenile stages reach the Delta in spring at a size highly vulnerable to entrainment (Figure 2).

American Shad

American shad spawn in the lower Sacramento River and tributaries in late spring and summer. Their larvae and early juveniles are prevalent in the north Delta in late spring and would be highly vulnerable to entrainment (Figure 3).

Striped Bass

Striped bass spawn predominantly in the lower Sacramento River in spring. Their larvae reach the north Delta in May and June, and would be highly vulnerable to entrainment (Figure 4).

Splittail

Splittail spawn in the lower Sacramento River floodplain in spring. Their early juveniles reach the north Delta usually in May and would be highly vulnerable to entrainment (Figure 5).

Prickly Sculpin

Prickly sculpin, an abundant native Delta fish, spawn in the lower Sacramento River in late winter and their larvae are found in the north Delta in early spring and would be highly vulnerable to entrainment (Figure 6).

Sacramento Sucker

Sacramento sucker spawn in Valley rivers in spring. Their larvae and early juveniles are present in the north Delta throughout spring and would be highly vulnerable to entrainment (Figure 7).

Threadfin Shad

Non-native threadfin shad, the most abundant forage fish in the Delta, spawn from late spring into summer throughout the Delta and lower rivers. Their larvae and early juveniles are prevalent in the north Delta in late spring and early summer, and would be highly vulnerable to entrainment (Figure 8).

Summary and Conclusions

Larval and early juvenile lifestages of many Delta fishes would be highly vulnerable to entrainment through the screens of the proposed WaterFix north Delta intakes. Juvenile/fry of these and other species (salmon3) would be highly vulnerable to impingement and predation at the screens.

Figure 1. Length frequency of Delta smelt captured in the California Department Fish and Wildlife’s annual Delta-wide 20-mm Survey. For each sub-graph within this figure and each of the following figures, the x-axis shows the length in millimeters of captured fish, and y-axis shows the number of captured fish of each length. Note that most of the early spring post-spawn larvae and juveniles are of a size highly vulnerable to entrainment (<20 mm).

Figure 2. Length frequency of white sturgeon captured in the 20-mm Survey . Note larval sturgeon were captured soon after their spawning period in spring at a highly vulnerable size to entrainment. Many larvae of the main lower Sacramento River population of white sturgeon would pass the proposed WaterFix intakes.

Figure 3. Length frequency of American shad captured in the 20-mm Survey . Note that most of the shad would have to pass the proposed north Delta intakes in spring at a size highly vulnerable to entrainment (<20 mm).

Figure 4. Length frequency of striped bass captured in the 20-mm Survey . Note that most of these striped bass larvae would have had to pass the area of the proposed north Delta WaterFix intakes at a size would be highly vulnerable to entrainment (<20 mm).

Figure 5. Length frequency of splittail captured in the 20-mm Survey Note that many splittail spawn in the Sacramento Valley floodplain just upstream of the proposed north Delta WaterFix intakes, and that many of the juvenile splittail emigrating back to the Delta would pass the proposed WaterFix intakes at a size vulnerable to entrainment (<20 mm).

Figure 6. Length frequency of prickly sculpin captured in the 20-mm Survey . Note that the larvae of winter-spring spawning sculpin would be highly vulnerable to entrainment (<20 mm).

Figure 7. Length frequency of native Sacramento sucker captured in the 20-mm Survey . Note that the juveniles of late winter-early spring river spawning suckers return to the Delta at a size vulnerable to entrainment (<20 mm).

Figure 8. Length frequency of threadfin shad captured in the 20-mm Survey . Note the late spring-early summer spawning threadfin shad are highly vulnerable to entrainment (<20 mm).

  1. WaterFix hearing transcript, 2/23/18, Page 124, line 2:  Dr. Greenwood testimony at State Board WaterFix hearing.
  2. Id., Page 156, line 6.  Note that many shad and striped bass spawn their buoyant eggs in the area of the proposed intakes and immediately upstream, as well as in the lower Feather, Sacramento, and American rivers.  Nearly all the eggs and newly hatched larvae would pass the proposed CWF intakes.
  3. Much of the wild salmon production from the American and Feather rivers’ fall-run populations comes from fry (30-50 mm) leaving these rivers in winter.  Winter is the peak period of proposed north Delta diversions of the WaterFix project.  These fry would not be protected by the proposed WaterFix screens.

Winter-Run Salmon Status – 2018

In a March 14 post, I discussed the primary factor in the initial decline of Sacramento River winter-run salmon in the early 1980s (Figure 1) – higher south Delta exports in drier years after the State Water Project came on line in the 1970s.   In a January 15, 2017 post, I discussed the causes of the recruitment failures from poor egg survival in spawning grounds in summers of 2014 and 2015.  In this post, I suggest that recruitment into the population and long-term population declines stems from fewer spawners (eggs produced) over time and low Sacramento River flows (Shasta Reservoir releases) in fall and winter.

The spawner-recruit relationship (Figure 2) depicts a strong positive effect of the number of spawners on the number of recruits into the population.  This is important because mortality reduces the number of spawners and also the subsequent years’ egg production – a double whammy.  Without mitigation, the population spirals toward extinction.

In addition, the relationship suggests that ten times as many salmon are produced in wetter years as in dry years for the same level of spawners.  Over the past decade, drier years have lower fall and winter river flows in the upper river spawning and early rearing reach (Figure 3), and lower winter flows in the lower river rearing and migratory reach (Figure 4).  The lower fall-winter flows reduce the productive capacity and survival of young salmon in the upper river spawning-rearing reach.  The low winter flows in the lower river reduce transport and survival on the way to and through the Delta.

The road to recovery is to build up the number of spawners by providing better flows in fall and winter, and to ensure eggs are sustained by cold-water Shasta Reservoir releases through the summer.  Hatchery augmentation helps sustain existing low levels of adult spawners in the population; otherwise the population would decline toward extinction in fewer generations.

Figure 1. Spawning population estimates of adult winter-run salmon in the upper Sacramento River from 1974 to 2017. Source: CDFW.

Figure 2. Spawner-recruit (log-log) relationship for the winter-run salmon population in the Sacramento River. The number is the brood year. For example: 1991 depicts the recruits derived from 1991 spawners. Red represents drier years, and blue represents wetter years for the brood year’s first summer and fall. For example: 1991 was a dry year.

Figure 3. Daily average Sacramento River flow below Keswick Dam, 2007-2018. The 54-year average median daily flow is also shown. Source: USGS.

Figure 4. Daily average lower Sacramento River flow at Wilkins Slough, 2008-2018. The 54-year average median daily flow is also shown. Source: USGS.

More on Sacramento River Salmon Declines Reclamation did what it had to do in water years 2010 to 2012, but not in 2016-2018.

With poor salmon runs from 2009 to 2011, Reclamation provided good conditions in the lower Sacramento River below Shasta Reservoir in spring-summers of 2010 to 2012 for fall-run and winter-run salmon. That effort contributed to recovery of fall-run salmon from the 2007-2009 drought in 2012-2014 (Figure 1). The sequence of below-normal, wet, and below-normal water years (2010-2012) provided sufficient water for good smolt survival, overcoming a significant deficit of adult spawners (eggs spawned). Poor conditions in the subsequent drought of 2013-2015 led to the latest fall-run collapse in 2016-2017.1

So did Reclamation provide good spring-summer conditions in the lower Sacramento River in below-normal, wet, below-normal water year sequence 2016-2018 to help recovery from the latest drought? No. As a result, we can now expect poor runs in 2019 and 2020 instead of a recovery.

2010-2012

Reclamation made a concerted effort in 2010-2012 to meet water temperature objectives in the upper river near Red Bluff (Bend, Balls Ferry, and Red Bluff) and the lower river near Sacramento (Wilkins Slough, Verona). The 56°F and 68°F water temperature objectives for the upper and lower river, respectively, were regularly met (Figures 2-4) in spring and summer.

2016-2018

In a less than concerted effort in 2016-2018, Reclamation has failed to meet the water temperature objectives more often and with greater discrepancies (Figures 5-7). More detail on the failure is provided in a recent post.

Problem and Solution

The causal factor is simply lower flows in spring and summer 2016-2018 than 2010-2012 (Figure 8). Lower flows, higher water temperatures, and lower turbidities lead to poor salmon smolt survival (and low adult migrant survival and subsequent egg viability). A concerted effort to recover salmon would mean maintaining water temperature objectives with spring-summer flows in the lower river at Wilkins Slough in the 7000-8000 cfs range instead of the 5000-6000 cfs range (Figure 8). This may require a supplemental release from Shasta Reservoir as in 2012 (Figure 9), which amounted to nearly 200,000 acre-ft of storage release, so that storage ended at 2,600,000 acre-ft at the end of September. The target end-of-September storage in below-normal water year 2018 is 2,300,000 acre-ft. With water deliveries near 2 million acre-ft from the Sacramento River in 2012 and 2018, a “concerted effort” involving 200 thousand acre-ft to maintain water temperature objectives prescribed in the water right permits seems reasonable. Whether it comes from Shasta storage or water contractor deliveries is a management/permitting agency decision.

Figure 1. Long-term trend in upper Sacramento River fall-run salmon escapement. Red circle denotes recovery from low escapement from 2007-2009 drought.

Figure 2. Water temperature in the upper (Red Bluff, Balls Ferry) and lower Sacramento River (Verona) in 2010. Top red line denotes objective for lower river (68°F); bottom line denotes objective for upper river (56°F). Red circle denotes excessive temperatures. In 2010, a below-normal water year following three years of drought had water temperatures near objectives.

Figure 3. Water temperature in the upper (Red Bluff, Balls Ferry) and lower Sacramento River (Verona) in 2011. Top red line denotes objective for lower river (68°F); bottom line denotes objective for upper river (56°F). In 2011, a wet water year had water temperatures near objectives.

Figure 4. Water temperature in the upper (Red Bluff, Balls Ferry) and lower Sacramento River (Verona) in 2012. Top red line denotes objective for lower river (68°F); bottom line denotes objective for upper river (56°F). Red circles denote excessive temperatures. In 2012, a below-normal water year following a wet year had water temperatures near objectives.

Figure 5. Water temperature in the upper (Red Bluff, Bend, Balls Ferry) and lower Sacramento River (Wilkins Slough, Verona) in 2016. Top red line denotes objective for lower river (68°F); bottom line denotes objective for upper river (56°F). Red circles denote excessive temperatures. In 2016, a below-normal water year following three drought years had water temperatures exceeding objectives April through July.

Figure 6. Water temperature in the upper (Red Bluff, Bend, Balls Ferry) and lower Sacramento River (Wilkins Slough, Verona) in 2017. Top red line denotes objective for lower river (68°F); bottom line denotes objective for upper river (56°F). Red circles denote excessive temperatures. In 2017, a wet water year had water temperatures exceeding objectives May through August.

Figure 7. Water temperature in the upper (Red Bluff, Bend, Balls Ferry) and lower Sacramento River (Wilkins Slough, Verona) in 2018. Top red line denotes objective for lower river (68°F); bottom line denotes objective for upper river (56°F). Red circles denote excessive temperatures. In 2018, a below-normal water year following three drought years had water temperatures exceeding objectives April through June.

Figure 8. Summer flow in the lower Sacramento River (Wilkins Slough) in 2010-2012 and 2016-2018.

Figure 9. Releases of water from Keswick Reservoir to the lower Sacramento River in 2012 compared to 54 year average.