State Water Board to Decide Fate of Shasta and Scott River Salmon and Steelhead – Part 2, the Scott River

On July 1, 2021, staff from the State Water Resources Control Board (State Board) held a public Zoom meeting to provide information and solicit input on potential actions that could be implemented to address low flows in the Scott River and Shasta River watersheds (Figure 1) during the ongoing drought.  The Scott and Shasta rivers are major salmon and steelhead producing tributaries of the Klamath River. The State Board’s July 1 workshop sought input and options prior to taking action.   

 CSPA is providing comments through this three-part series.  Part 1 was the introduction, with a description of the general problems and solutions.  This is Part 2, with specific comments on the Scott River.  Part 3 will cover the Shasta River.

The Scott River Problem

The Scott River has a chronic low streamflow problem that occurs in the summer and fall of most years.  Only in very wet years, do ranchers and fish for the most part get the water they need.  In most years, nearly all the water in the watershed goes to agriculture, while the lower river and its tributaries run virtually dry.  Fish survive in the upper reaches of the river and in the lower tributaries that receive snowmelt and spring water from the adjacent Marble and Trinity mountains.  There are also spring-fed refugia in the middle sections of the river and In tributaries to the lower sections of the river.  But at many locations in the watershed, a large portion of the surface-water flow goes underground into near-surface aquifers, only to resurface as springs and be further diverted or extracted by wells, or go back underground.

The California Department of Fish and Wildlife is recommending summer minimum flows from 30-50 cfs at the lower end of the river to protect over-summering juvenile Chinook and Coho salmon, and steelhead.  These recommended flows represent roughly half of the available summer baseflow water supply in the Scott River.  Without a minimum flow requirement, almost the entire summer baseflow is  consumed by a carefully distributed water supply extraction system regulated by seniority-based surface water rights and overseen by the State Board or by minimally regulated groundwater pumping.  A large portion of the consumption occurs by means of minimally regulated shallow well pumping from the valley’s alluvial floodplain aquifer.  This supplies water for stock watering, pasture irrigation, or large scale sprinkler irrigation of hayfields.  The aquifer is recharged by surface flows and applied irrigation, and in places is augmented by beaver dam flooding.  The floodplain was once known as “beaver valley”.  However, much of such wetland floodplain habitat has been lost to channelization to enable irrigated agriculture.

There are many areas in the watershed that provide refugia for over-summering salmon and steelhead.  The extent of these refugia decreases over the summer as the surface water supply declines and springs cease flowing.  The loss of refuge habitat over the summer is greatest in drought years.  As the extent of refuge habitat declines, juvenile salmon and steelhead become more concentrated or succumb to “catastrophic stranding” where they die from refugia drying up or overheating.  Many refugia are on private lands.  Many are unidentified.  They need to be identified and surveyed to determine their characteristics and need for protection.

Drying rivers also pose problems for emigrating juvenile and immigrating adult salmon and steelhead in the fall and winter.  When fall rains and winter snow are lacking or late, juvenile fish are hindered or blocked from moving downstream to the Klamath River.  Adult fish cannot move upstream to spawning grounds in the valleys.

General Solution Options for the Scott River

Other than CDFW’s recommended minimum instream flows to save the fish (which would be successful), there are further options to help the fish.  One major option is to protect through the summer-fall season the many refuge areas that are present and functioning at the end of the spring snowmelt season. This can be accomplished in several ways:  (1) not allowing any diversion of surface or groundwater within or near the designated refuge; (2) pumping well water directly into the refugia; (3) diverting other surface waters into the refugia; and (4) protecting and enhancing refuge habitat (e.g., cattle fencing, riparian plantings, channel improvements).  The basic concept is to protect and enhance cold-water habitats of the refugia.  Each refuge will have its own prescription.  Some may benefit from introduced beaver colonies.  Note that some landowners working with CDFW and local stakeholder groups have accomplished some of these actions at varying scales of effort and with varying degrees of success.

Another solution option is a program to scale back seasonal agricultural water use based on the needs of fish and their habitat, as well as those of the landowners.  For example, a major problem for Scott River salmon is not being able to ascend into Scott Valley in the fall because of low streamflows.  Unlike the Shasta River Watershed, in which irrigation is disallowed after October 1, irrigation is allowed into December in the Scott watershed.  Scott Valley hay-crop irrigators in particular could cease irrigating a month or two earlier, foregoing late season cuttings.  This option was suggested by a landowner of a large ranch who was even willing to use his large-capacity wells to help water the river during the fall salmon migration.

Specific Recommended Solutions

The following recommendations offer large potential benefits with limited impacts and costs.

1.      Focus on the surface water irrigation diversions – all should cease in summer of dry years

Two large diversions with large canal distribution systems make up the bulk of the surface water diversions in Scott Valley, at least in wetter years or spring of drier years.  If these have not as yet cut back diversions as in most dry years, their diversions should cease.  The largest diversion, Young’s Dam, is a relatively large concrete structure with a fish ladder (Figure 2).  In summer of dry years, it usually does not divert, but does back up water in the river channel, causing significant rises in water temperature.  More flow would minimize such heating.  More flow is necessary to provide upstream passage of adult salmon in late summer and fall through the dam’s fish ladder, even when the dam is not diverting water.

The second largest surface diversion is Farmers Ditch, which diverts directly from the Scott River channel (Figure 3).  It too usually does not divert in summer of dry years, due to lack of surface flow.  Prior to ceasing its diversions, it contributes to drying up the river in the downstream tailings reach.

There are many small diversions1 in the middle and upper valley from reaches of the river and lower tributaries that retain flows in the summer.  Locally, they divert significant portions of the available streamflow.  Some are crudely designed and operated, and are unregulated (Figure 4).  All surface diversions should cease operating, since most are from spring-fed stream reaches supporting rearing salmon and steelhead.  In many cases, such diversions contribute to the dewatering of downstream reaches.  One such example is lower Shackleford Creek, where multiple small diversions in flowing spring-fed sections in the several miles upstream contribute to the drying up of the creek near its mouth on the Scott River (Figure 5).

2.      Middle and lower reaches of Scott River affected by groundwater pumping – all well pumping from locations contributing to dewatering of the main channel of the Scott River or lower tributaries should cease pumping.

Most free-flowing reaches of the middle and lower Scott River and its lower tributaries are over-summering juvenile salmon and steelhead refugia.  Even warm low flows provide some cooler hyporheic flow to sustain young salmon and trout in microhabitat areas of the stream channel (Figure 6; also see videos referenced at the end of this post).  Such locations cannot support high population densities for long and thus could use added flow to sustain them.

3.      Refugia in middle and lower reaches of Scott River and lower tributaries affected by groundwater pumping could be supported by pumping cold groundwater into stream channels to help sustain refuge habitat.

In reaches where groundwater pumping is no longer needed, idle wells can pump cold groundwater directly into stream channels to sustain specific refugia or to provide added flow for fish migrations.  Many ponds situated within the Valley’s water table have cold water that could be drained or pumped to refuge areas.  The tailings reach in the upper end of the Valley has many such ponds.

Summary and Conclusions

All surface diversions from free-flowing reaches of the Scott River should cease in summer-fall of 2021.  All such reaches are fed by snowmelt or springs, and are most likely refugia for over-summer rearing salmon and steelhead.  All well pumping near the river and lower tributaries that may affect springs or hyporheic flow in refugia should be cut back to help sustain the refugia.  All refugia should be identified and classified to value and need.  Where feasible, wells or surface waters can supply supplemental water to sustain refugia.  All refugia should be mapped, surveyed, and characterized for need; high value  options should be identified and implemented.  All irrigation in the Scott Valley (not including stock watering) should cease by October 1, as is already done in the Shasta Valley.  Cutbacks of well pumping for Scott Valley irrigation should commence on a graded scale on August 1 and September 1.

Figure 1. The Scott River and Shasta River Valleys in northern California west of Yreka, CA (Yreka is located in the Shasta River Valley). The Scott and Shasta Rivers flow north into the Klamath River, which runs west to the ocean. The Salmon River watershed is immediately west of the Scott River watershed. The upper Trinity River watershed is immediately to the south of the Scott River watershed.

Figure 3. Farmers Ditch diversion located in upper middle valley on Scott River.

Figure 2. Young’s Dam and diversion located on the Scott River in mid-Valley.

Figure 4. An unnamed small diversion located in spring-fed reach of Scott River below tailings reach. Both the river and diversion ditch contained large numbers of juvenile coho salmon.

Figure 5. The mouth of Shackleford Creek on Scott River in late summer.

Figure 6. Reach of the lower Scott River upstream of Fort Jones near Eller Bridge, nearly dewatered by groundwater pumping and lowering of the groundwater table. Despite lack of flow, the reach retains some over-summering refuge pools sustained by groundwater and hyporheic flow. Eventually, these areas become too warm, and many thousands of juvenile salmon and steelhead die. Such areas would benefit from a cessation of irrigation with water sourced from adjacent wells. Idle wells could be employed to add cold water to sustain the refugia.

Available Videos of Scott River Refugia

 

 

 

  1. There are approximately 800 water right holders in the Scott River watershed.

Reclamation Begins Summer Shasta Operations that Sacrifice Endangered Winter-Run Chinook Salmon to Power Production and Irrigation Deliveries

Reclamation has begun its planned summer operation for winter-run salmon in this critically-dry summer of 2021. After delivering a lot of warm surface water from Shasta Reservoir to its downstream contractors this spring,1 Reclamation has now begun dipping into Shasta’s cold-water pool (Figures 1 and 2). Reclamation’s summer operation will encourage the holding salmon to spawn and, for a time, ensure the eggs can survive in the primary ten-mile spawning reach downstream to the mouth of Clear Creek (CCR). Reclamation’s plan would subsequently raise water temperatures later in summer, after peak spawning and embryo development have occurred.

In first five days (June 17-22) of the new operation, Reclamation met its target temperature. It has released about 8000 cfs of 53ºF water from Keswick Dam to the Sacramento River near Redding (Figure 3). It achieved the target by blending hydropower-peaking flows from Shasta and Whiskeytown dams in Keswick Reservoir, and then releasing the blended water to the Sacramento River below Keswick Dam. During this time, Reclamation released an average of 6500 cfs from Shasta Dam at 50-51ºF, and an average of 1200 cfs at 53ºF through the Spring Creek Powerhouse (SPP) from Whiskeytown, into Keswick Reservoir.

This operation is not sustainable over the summer. It uses more of the cold-water-pool volume than is necessary to maintain temperature control. It sacrifices the cold-water pool in order to continue power peaking and to maintain relatively high downstream irrigation deliveries. Considering all of the factors pushing Keswick release temperatures higher over the summer, there will not be enough cold water by the end of the summer to protect salmon.

High Shasta Dam releases in the afternoon and evening to meet peak power demands pull more water from the warmer surface waters of the reservoir (Figures 4-6). This then requires blending with cold-water releases to keep Keswick water cooler. A similar situation occurs with the Whiskeytown releases (Figure 7-8). In addition, water in Whiskeytown becomes progressively warmer over the summer and requires an ever-increasing amount of Shasta’s cold-water pool to cool that water. Atmospheric heating combines with heating of water from Shasta during power-peaking operations to further affect Keswick Reservoir’s water temperatures (Figures 9 and 10).

Reclamation’s current high demands on Shasta’s cold-water pool will thus require reverting in late summer to warmer water releases. This will lower the survival of late summer spawners and their eggs. It will also leave little cold water for fall-run salmon in October and November. Reclamation is willing to accept these trade-offs to make relatively high power and irrigation deliveries.

To reduce the loss of winter-run (and fall-run) salmon this summer, CSPA and two other organizations submitted an alternative Temperature Management Plan (CSPA TMP) to the State Water Board on May 23, 2021. The CSPA TMP would provide better summer water temperatures and salmon egg survival. The CSPA TMP, comprised of a transmittal letter, descriptive elements and spreadsheet, proposes a release of just 5000 cfs of 52-53ºF water from Shasta Dam’s gates and minimal warmer water inputs from Whiskeytown/Trinity. The CSPA TMP proposes a 5000 cfs release of 53-54ºF water from Keswick, with less daily peaking power production to limit withdrawals of warm water from the surface of Shasta reservoir.

The CSPA TMP would minimize impacts to the salmon and save approximately 200,000 acre-feet of Shasta storage. It would also save 200,000 acre-feet of Trinity storage. It would greatly reduce power production from five system powerhouses, though power generation capacity would still be available for periods of extreme power demand.

Above all, the CSPA TMP would reduce water supply deliveries in the Sacramento Valley and eliminate water transfers from Shasta in the summer and fall. Reclamation is willing to sacrifice a substantial portion of the Sacramento River’s salmon in order to prioritize agricultural water deliveries. The CSPA TMP prioritizes a system operation that will reasonably protect salmon, and allocates water supply based on the water that is available within the constraints of that operation.

Figure 1. Shasta Dam infrastructure and operations, and cold-water pool conditions, during the June 17-22 period. Note water release from PRG gates, drawing from the layer of water less than 48ºF, and release from middle gates of water that is 70ºF or warmer. The combined flow release from the Temperature Control Device was 6000-7000 cfs of 51-52ºF water.

Figure 2. Water temperatures (ºF) recorded at Sacramento River gages from Shasta Dam (SHD, RM 310) downstream to Red Bluff (RDB, RM 240) 5/1-6/16, 2021. Keswick Dam (KWK, RM 300) is the release point from the Shasta Dam complex to the Sacramento River. Spawning area is ten miles downstream of Keswick to mouth of Clear Creek (CCR). Red arrow points out yellow highlight of recently changed operation to benefit salmon spawning.

Figure 3. Water temperatures (daily average. ºF) from Shasta Dam release (SHD) and from Keswick Dam (KWK, RM 300) downstream through primary winter-run spawning reach to gage located just upstream from mouth of Clear Clear Creek (CCR, RM 290). Note: the difference between SHD and KWK release temperatures are due to inputs to Keswick Reservoir from Whiskeytown from Whiskeytown Reservoir through the Spring Creek Powerhouse (SPP) and to internal heating and mixing in Keswick Reservoir. The compliance control point gage is SAC, located at the midpoint of the ten-mile spawning reach. The compliance point target was 55ºF during the period.

Figure 4. Water temperature (ºF) at gage SHD immediately downstream of Shasta Dam, June 17-22.

Figure 5. Shasta Reservoir hourly outflow (cfs), June 17-22.

Figure 6. Water temperature (ºF) at gage SHD immediately downstream of Shasta Dam, June 17-22.

Figure 7. Hourly measued water release (cfs) from Whiskeytown.

Figure 8. Water temperature (ºF) at gage SPP immediately downstream of Spring Creek Powerhouse June17-22.

Figure 9. Keswick Reservoir hourly outflow (cfs), June17-22.

Figure 10. Water temperature (ºF) at gage KWK immediately downstream of Keswick Dam, June17-22.

Peaking Power at Shasta Dam in Summer 2021 – Saving Winter Run Chinook Salmon

In a recent 6/13/21 post, I discussed various tradeoffs of Shasta Reservoir operations on water supply deliveries, power production, and salmon survival for summer 2021. In that post I made reference to tradeoffs with peaking power production at the Shasta hydropower system. This post provides more information on those potential tradeoffs.

Peaking Power Production

Peaking power refers to the release of varying amounts of water through power turbines on a within-day schedule to meet the peak power demands of the regional electric grid. Inflows into Keswick Reservoir near Redding show the peaking power production schedule from Shasta Dam and Whiskeytown Dam into Keswick Reservoir on the Sacramento River (Figure 1). Over a recent two-day period, June 12-14 2021, hourly inflows to Keswick Reservoir ranged from 1900 cubic feet per second (cfs) to 17,500 cfs. Peak inflows were in late afternoon and evening, reflecting peak power demands. Minimum inflows were in the early morning, when power demand is low.

Peaking Power and Water Temperature from Shasta Dam

High releases for peaking power at Shasta Dam can draw warm water from near the surface of Shasta Reservoir (Figure 2). Water temperature below the dam increased from 50ºF to 56ºF in the recent example peaking periods, June 12-14. The positive relationship between dam release flow and water temperature is obvious (Figure 3).1

Peaking Power and Water Temperature from Whiskeytown Dam

In contrast to Shasta Dam, there was minimal influence on water temperatures when there were peaking releases from Whiskeytown Dam from June 12-14. The release water temperatures into Keswick Reservoir through the Spring Creek Powerhouse are minimally influenced by the flow rate (Figures 4 and 5). On June 13, there was no peaking through Spring Creek Powerhouse, but there was little variation in water temperature from peaking days on June 12 and 14.

Summary of Shasta-Keswick Operations

Shasta-Keswick operations is about to enter a new phase of summer operations. Under the Bureau pf Reclamation’s planned operations, there will be larger volumes of exports from the Trinity River system through Whiskeytown Reservoir over the summer. There will also be larger release volumes from Keswick Reservoir to meet increasing downstream contractor demands (Figure 6).

Proposed Operations

The proposed CSPA Temperature Management Plan2 for June-October, 2021 would provide a lower Keswick Dam release. First, Trinity exports would end, except for releases of 300 cfs down Clear Creek, because Trinity water releases through Spring Creek Powerhouse are already pushing the threshold temperature of 53ºF. Second, Shasta release would be limited to releases from coldwater pool at 52ºF to provide 5000 cfs total Keswick release, thereby saving Shasta storage. Third, peaking power at Shasta Dam would be minimized to ensure that warm surface waters are not drawn into the TCD gates (Figure 7) during peaking operations.

Sustaining the cold-water pool in Shasta through the summer is a function of (1) maintaining total storage and cold-water-pool volume in storage: (2) reducing Whiskeytown releases when they become too warm (>53ºF); and (3) minimizing warm water from peak power releases. Such a strategy would help save winter-run salmon eggs in the summer spawning season.

Figure 1. Inflow (cfs) to Keswick Reservoir from Shasta Dam and Spring Creek Powerhouse (cfs), June 12-14, 2021.

Figure 2. Water temperature (ºF) of the water released from Shasta Dam, June 12-14, 2021.

Figure 3. Relationship between water temperature and Shasta Dam release volume, June 12-14, 2021.

Figure 4. Total reservoir release (cfs) from Whiskeytown Dam, June 12-14, 2021. Note that of the minimum 250 cfs release, about 125 cfs were released to Clear Creek to maintain base flows and were not releases through Spring Creek Powerhouse.

Figure 5. Water temperature of water exiting the Spring Creek Powerhouse into Keswick Reservoir, June 9-14, 2021.

Figure 6. Summary of Shasta operations, June 1-13, 2021. Note SAC is gage station 5 miles below Keswick Dam on Sacramento River. Source: https://www.usbr.gov/mp/cvo/vungvari/sactemprpt.pdf

Figure 7. Shasta Dam operations and reservoir storage conditions on June 10, 2021. Source: https://www.usbr.gov/mp/cvo/vungvari/sactemprpt.pdf .

  1. At other times, depending on specific conditions and operations, the opposite relationship is true.  See https://calsport.org/fisheriesblog/?p=3596, Figure 6, for example from 2014 when higher temperatures were associated with lower release volumes.
  2. Referenced in https://calsport.org/fisheriesblog/?p=3714.  The May 23, 2021 CSPA Temperature Management Plan proposed limiting Trinity exports to 300 cfs for the entirety of the June-October period, to be released exclusively down Clear Creek.  In addition to the water temperature benefits in the Sacramento River, such operation would also conserve cold water and overall storage in Trinity Reservoir.

The Week the Salmon Died

It was the first week in June 2021. The salmon were the last of 2021’s endangered winter-run and threatened spring-run Chinook salmon heading up the Sacramento River to spawn below Shasta Dam and in tributary streams. Many were in the middle of their 300-plus-mile journey from the Golden Gate through the Bay, the Delta, the lower Sacramento River. Water temperatures rose to lethal levels through the lower end of the Sacramento River, as flows at Wilkins Slough (River Mile 125) dropped nearly 50% to 3500 cfs and water temperatures reached 25ºC (Figure 1).

Water temperatures above 68ºF (20ºC) are stressful for salmon, and 72ºF (22ºC) is their maximum tolerance limit that forces them to seek cold-water refuge. If salmon cannot find refuge, water temperatures near or above 77ºF (25ºC) are lethal.

On June 1, the State Water Board approved a “temporary urgency change petition” (TUCP) from the Bureau of Reclamation and the Department of Water Resources (DWR) to reduce Delta outflow. By June 2, less than half of the flow released in Redding to the upper reaches of the lower Sacramento River flow (about 8000 cfs, including 7000 cfs from dam releases) was reaching Wilkins Slough, 180 miles downstream. In those 180 miles, more than half the flow was diverted to agriculture. The high early-June water temperatures and low flows are unprecedented for late spring (Figure 2).

Reclamation and DWR’s petition discussed impacts to fish in the Delta. The water temperatures in the Sacramento River at Wilkins Slough in the first week in June show how the Delta and salmon far upstream are connected. The upstream impacts of bad Delta decisions is once again transparent: low requirements for Delta outflow means low flows and lethal water temperatures in the Sacramento River.

An extreme heat period for the Sacramento Valley is expected for the third week of June, and it is still only spring. Winter-run and spring-run adult salmon that made it to the spawning grounds below Shasta and Keswick dams earlier this winter and spring are very likely to experience highly stressful water temperatures (>60ºF) for holding and spawning. Because it is releasing too much agricultural water now, Reclamation is likely to run out of cold water in Shasta by the time that fall-run salmon arrive in Redding in October and November.

The drumbeat of dying salmon will be pounding all summer and into the fall.

Figure 1. Water temperature and Sacramento River flow at Wilkins Slough (RM 125) 5/25-6/7, 2021.

Figure 2. Water temperatures in the Sacramento River at Wilkins Slough (RM 125) in dry years of of the past decade. Values for 2021 are literally over the top. The lethal level for salmon is 77ºF. Stress occurs at >68ºF. Migration ceases at 72ºF.

May Shasta-Trinity Operations Prove Deadly for Salmon

Back on May 3, 2021, I warned about how bad things were getting for salmon in the Sacramento River below Shasta Reservoir, even compared to drought years 2014 and 2015. With high-volume releases from Shasta storage through almost the end of May, conditions went from bad to worse. Water year 2021 began as a critical drought year after a dry year, with everyone scrambling to save the winter-run salmon in the Sacramento River below Shasta and provide water for downstream Central Valley Project (CVP) contractors. The latter objective has won outright.

Water releases to the upper Sacramento River were even higher in May than April (Figure 1). Releases remained significantly higher than either 2014 or 2015. Such high releases sustained water deliveries to the CVP’s Sacramento River Settlement Contractors at high levels despite reduced allocations for a critically dry year with low storage.

Water temperatures were also significantly higher in May (Figure 2), creating lethal conditions (>53ºF) for eggs of winter-run salmon, which typically begin spawning in April. Peak spawning occurs in June and July, with 60-90% of total spawning by the end of July, even with spawning delayed in warmer years.1 Spawning has likely been delayed in 2021 because of the warmer water temperatures. Delayed spawning also has deleterious effects on egg survival and smolt production.2

The high-volume releases have led to lower total Shasta Reservoir storage at the end of May in 2021 compared to 2014 and 2015 (Figure 3). Inflows to the reservoir (not shown) were similar in the three years – averaging for May just above 3000 cubic feet per second (cfs).

Reclamation has sustained the volume of Shasta Reservoir’s cold-water pool through May 2021 at 2014 and 2015 levels (Figure 4), despite the higher releases and lower storage in 2021. Reclamation did that in part by bypassing power plant releases that draw colder water and instead drawing warmer surface water from “river outlets” nearer the top of the dam (Figure 5).

Reclamation has yet to gain approval for summer operations, but the draft Temperature Management Plan (TMP) it submitted to the State Water Board on May 5 proposed Shasta-Keswick releases of 8000-10,000 cfs. Reclamation’s May 5 draft plan also proposed a target temperature of 56ºF for the 10-mile spawning reach of the Sacramento River just downstream of Keswick Reservoir, around Redding. Such temperatures will lead to high egg mortality this summer. Reclamation’s draft plan included significant inputs of warmer water (>53ºF) originating in Trinity Reservoir and exported to the Sacramento River via the Spring Creek Tunnel from Whiskeytown Reservoir to Keswick Reservoir.

The higher Shasta releases and warmer Trinity water, while proving substantial power generation and water supply deliveries, are depleting already-too-low Trinity and Shasta reservoir storage. They also preclude maintaining the safe water temperature of 53ºF that would minimize egg mortality this summer in the Sacramento River’s spawning reach. Lower storage also results in late summer loss of access to the cold-water pool in Shasta Reservoir.

In a May 21, 2021 letter to Reclamation, the State Water Resources Control Board commented on Reclamation’s draft TMP. The State Water Board’s letter suggested maintaining an end-of-September Shasta target storage of 1,250,000 acre-feet, stating that this would represent a “reasonable balance between temperature control this year, maintaining some carryover storage going into next year, and providing for consumptive water supply needs.” The main problem with the State Water Board’s target 1.25 MAF end-of-September storage is that it would still result in >50% (and potentially much higher) salmon egg mortality. The State Water Board’s target does not correct warm Trinity transfers, excessive Shasta and Trinity releases, and low Shasta and Trinity storage. It would also leave no cold water for Sacramento River fall-run salmon in the fall. The low storage levels may even limit access to cold-water pools in the reservoirs.

Eliminating 80-85% of the warm Trinity transfers and reducing cold water releases from Shasta would save a much greater percentage of the fish in the Sacramento and Trinity-Klamath river systems. It could maintain safe 53-55ºF spawning reach temperatures through the summer, while preserving approximately 500,000 acre-ft of Shasta and Trinity storage for next year.

Such an alternative would cut power production and Sacramento Valley water supply deliveries to roughly half of the levels in 2014 and 2015. In this regard it bears remembering that senior water contractors chose not to absorb some of the water cutbacks in 2020, the first year of the latest drought. Now, drastic delivery cuts are necessary to avoid the third disaster for winter-run salmon in seven years.

For more complete discussion, see CSPA’s May 23, 2021 alternate Temperature Management Plan at https://www.waterboards.ca.gov/waterrights/water_issues/programs/drought/sacramento_river/.

Figure 1. Keswick Reservoir water releases (cfs) in April-May 2014, 2015, and 2021

Figure 2. Keswick Reservoir water temperatures (ºF) in April-May 2014, 2015, and 2021.

Figure 3. Shasta Reservoir storage (acre-feet) in April-May 2014, 2015, and 2021.

Figure 4. Shasta Reservoir cold-water-pool volume (1000s of acre-ft) in water years 2014 (red line), 2015 (purple line), and 2021 (black line). Also shown is average (shaded) and two wetter years. Source.

Figure 5. Shasta Reservoir pool configuration and release sources on May 18, 2021. Temperature Control Device (TCD) gate operation is also shown. Note the combination of turquoise from TCD gates and orange from river outlet water sources provided Shasta releases on May 18.

  1. Source.
  2. For further discussion, see E. Dusek Jennings and Henrdix (2020), Spawn Timing of Winter-Run Chinook Salmon in the Upper Sacramento River.  Available at: https://escholarship.org/uc/item/00c1r2mz